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Abstract

Given an expanding Markov map T : [0, 1] → [0, 1] which admits an absolutely

continuous invariant probability measure, we say that T gives rise to a dimension

gap if there exists some c > 0 for which supp dimµp ≤ 1− c, where µp denotes the

Bernoulli measure associated to the probability vector p. We prove that under a

‘non-linearity condition’ on T , there is a dimension gap.

Our approach differs considerably to the approach of Kifer, Peres and Weiss

in [KPW], who proved a similar result. The first part of our proof involves obtaining

uniform lower estimates on the asymptotic variance of a class of potentials. Tools

from the thermodynamic formalism of the countable shift play a key role in this part

of the proof. The second part of our proof revolves around a ‘mass redistribution’

technique.

We also study a class of ‘Käenmäki measures’ which are supported on self-

affine sets generated by a finite collection of diagonal and anti-diagonal matrices

acting on the plane. We prove that such a measure is exact-dimensional and that

its dimension satisfies a Ledrappier-Young formula. This is similar to the recent

results of Bárány and Käenmäki [BK], who proved an analogous result for quasi-

Bernoulli measures. While the measures we consider are not quasi-Bernoulli, which

takes us out of the scope of [BK], we show that the measures can be written in terms

of two quasi-Bernoulli measures on an associated subshift and use this to prove the

result.

vi



Chapter 1

Introduction

In this thesis we study the dimension of measures which appear in various dynamical

settings. A common property of all the measures that are studied is that each one can

be realised as the ‘projection’ of some measure which is defined on a symbolic space.

Therefore, symbolic dynamics serves as an important model throughout the thesis.

Chapters 3-5 are concerned with a ‘dimension gap’ problem for countable branch

expanding maps of the interval. In chapter 6 we prove the exact-dimensionality of a

measure which is supported on a ‘self-affine set’, and investigate its underlying struc-

ture. Paramount to this thesis is the use of tools from thermodynamic formalism to

study the dimension of our measures.

In Chapter 2 we provide some preliminaries for the thesis. We begin by

presenting some fundamental notions and results from ergodic theory, dynamical

systems, measure theory and dimension theory. Next we introduce the notion of an

iterated function system, which is an important tool for constructing fractal sets.

In particular, we direct our attention to self-affine sets, which are one such class

of fractal set which can be produced using this construction. The final part of our

preliminaries is dedicated to the thermodynamic formalism of the shift map in three

different settings: Hölder continuous potentials on the finite shift space, sub-additive

potentials on the finite shift space and locally Hölder potentials on the countable

shift space. The tools which are provided by thermodynamic formalism will be

fundamental to the thesis, both to verify the existence of objects which we wish

to study (such as Gibbs measures) and also to translate problems which appear in

dynamics to the language of thermodynamic formalism, at which point we can then

apply the extensive machinery which has been built up throughout the literature

over the last fifty years. Varying amounts of detail are given within each account of

the thermodynamic formalism, which reflects the depth of the theory that will be
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required from each setting.

In Chapters 3-5 we consider a ‘dimension gap’ problem, which forms the

bulk of this thesis. Let T : [0, 1] → [0, 1] be an expanding Markov map. Under

some regularity conditions, it is known that T has a unique absolutely continuous

invariant probability measure µT . Under these conditions, we say that T gives rise

to a dimension gap if for some c > 0

sup
p∈P

dimµp 6 1− c (1.1)

where P denotes the simplex of all probability vectors, µp denotes the Bernoulli

measure for the probability vector p ∈ P (which has been projected to the real line

in the usual way) and dim denotes Hausdorff dimension. Therefore ‘dimension gap’

is meant in the sense that there does not exist a Bernoulli measure of dimension

greater than 1− c, where we notice that 1 is the dimension of µT .

We are interested in understanding the underlying geometric cause of the di-

mension gap. It is easy to show that in the case where T has finitely many branches,

T has a dimension gap if and only if the absolutely continuous measure is not a

Bernoulli measure. We are primarily interested in the countable branch analogue of

this problem, where the facts that the dimension function is not necessarily upper

semi-continuous and the set of Bernoulli measures is not compact pose difficulties

which are not encountered in the finite branch case. It was shown by Kifer, Peres

and Weiss [KPW] in 2001 that under some regularity conditions on T , (1.1) holds if

and only if µT is not Bernoulli, where c is a constant which can be made explicit as

long as the absolutely continuous measure µT is known. In particular, they showed

that for the Gauss map G(x) = 1
x mod 1,

sup
p∈P

dimµp 6 1− 10−7.

Their proof relies on calculating the dimension of the set of points which see an

exceptionally large deviation for the frequency of a certain word appearing in the

symbolic coding of the point from the one prescribed by the absolutely continuous

measure µT . The constant c then depends on how much weight µT assigns the

cylinder corresponding to this word.

In Theorem 3.3.1, we prove that (1.1) holds if our map T satisfies a ‘non-

linearity condition’, and in our case c depends on the the derivative of T at four

periodic points, so the absolutely continuous measure need not be known for the

calculation of explicit bounds on the ‘gap’ c. However, even though in principle c
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can be estimated by using our approach, for the Gauss map this yields a particularly

poor estimate of the gap (compared to the estimate of 10−7 found in [KPW]) and for

this reason we do not include explicit estimates on c. The ‘non-linearity condition’

that we impose on our map turns out to be stronger than the analogous condition in

[KPW], since we demand some non-linearity in the first two branches. This lack of

generality is a byproduct of tools used in the proofs contained in Chapter 5. If one

could get around these technical difficulties, we could obtain an equivalent result to

[KPW].

While Theorem 3.3.1 and the analogous result in [KPW] are comparable,

the proofs are completely different. We propose a new approach for proving this

type of result which is largely based on ideas from thermodynamic formalism. Our

approach offers some new techniques and an interesting link between dimension gaps

and lower bounds on the (asymptotic) variance of certain potentials. We will now

summarise the contents of chapters 3-5 in more detail.

Chapter 3 is dedicated to introducing the dimension gap problem for count-

able branch Markov maps and any tools and notation that will be required. We

begin by discussing the finite branch analogue of this problem, which is markedly

simpler to analyse but provides important intuition for the general setting. We then

introduce the class of maps which we will be working with and provide some his-

torical motivation, some important examples of such maps and their key properties.

Next, we outline results due to Walters [W] and Kifer, Peres and Weiss [KPW] which

are important milestones in the story of the problem. This is followed by a state-

ment of our main result Theorem 3.3.1, along with a discussion of the conditions

that are imposed and a comparison with the analogous result from [KPW]. The

final part of this chapter lays out a description of the structure of the proof, which

is separated into two distinct and independent parts, tackled in Chapters 4 and 5

respectively. Roughly speaking, the first part deals with the dimension of Bernoulli

measures which assign some uniform amount of mass on the first two cylinders,

while the second part considers measures where mass is concentrated in the tail.

In Chapter 4 we obtain a uniform upper bound on the dimension of Bernoulli

measures which assign a uniform amount of mass on the first two cylinders. More

precisely, we show that for each ε > 0 there exists some constant Gε for which

sup
p∈Pε

dimµp 6 1−Gε

where Pε can (for now) be thought of as the set {p ∈ P : p1, p2 > ε}. In order to

obtain this bound, we relate the dimension of such a measure µp to the derivative

3



of the function βp : [0, 1] → [0, 1] at the point t = 1, where βp is defined implicitly

via the equation

P (−βp(t) log |T ′|+ tfp) = 0. (1.2)

In (1.2) fp denotes the locally constant potential which when evaluated at the nth

interval of monotonicity yields log pn provided that pn > 0, and 0 otherwise. P

denotes the topological pressure. This reduces the problem to studying the convexity

of βp. In particular, once we evaluate the derivatives of βp we see that the second

derivative of βp is given in terms of the variance

σ2
µp,t(fp,t)

of a potential fp,t for an appropriate Gibbs measure µp,t. Thus the heart of the

problem is finding a lower bound on σ2
µp,t(fp,t) which is uniform for p ∈ Pε and t

in some compact interval. While it has been known for a long time that the vari-

ance plays an important role in several areas of dynamics, for instance appearing

in many statistical properties of dynamical systems such as the central limit theo-

rem, much less is known about estimates on the variance. By exploiting different

characterisations of the variance it is generally easy to obtain upper bounds on the

variance, but lower bounds have not previously been considered. The remainder of

this chapter is dedicated to the description and execution of a method for obtaining

a lower bound for the variance. One part of this method allows us to draw on tools

from Hilbert-Birkhoff cone theory, which is discussed more thoroughly in Appendix

A.

In Chapter 5 we conduct the second part of the proof, that is, we con-

sider the case where p /∈ Pε. Here we exploit the formula dimµ = h(µ)
χ(µ) which (in

our setting) holds for all finite-entropy ergodic measures, where h(·) denotes the

measure-theoretic entropy and χ(·) denotes the Lyapunov exponent. Rather than

obtaining a direct upper bound for the dimension of such measures, we construct an

algorithm which associates to each p /∈ Pε some pε ∈ Pε for which we have uniform

control over the difference in the entropy h(µp) − h(µpε). The focus then turns to

controlling the difference in the Lyapunov exponents

χ(µp)− χ(µpε) =

∫
log |T ′|dµp −

∫
log |T ′|dµpε . (1.3)

It is incredibly difficult to compare the integrals of log |T ′| with respect to two

distinct Bernoulli measures, due to the structure of the Bernoulli measure once it
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is projected to the real line. To this end, we present an approach which allows us

to write (1.3) instead as the difference of two integrals of distinct functions - but

importantly with respect to the same measure ν, which is a Bernoulli measure that

is defined on a ‘larger’ symbolic space. In the case where T is orientation reversing,

this allows us to write

χ(µp)− χ(µpε) >
∫
E

log

∣∣∣∣(T 2)′(f2(i))

(T 2)′(f1(i))

∣∣∣∣ dν(i) (1.4)

where E is an explicit set in the ‘larger’ symbolic space and fi are projections

from this space to R. A similar expression holds whenever T preserves orientation.

Importantly, (1.4) lends itself to explicit lower estimates. In fact, we will only need

to use that the integral in (1.4) is non-negative, although we remark that in a recent

joint work with Baker [BJ], better lower bounds on (1.4) were used in order to study

a related problem (of determining the existence of a Bernoulli measure with maximal

dimension amongst the Bernoulli measures). Consequently, combining (1.4) with the

estimate on the difference in entropy, we deduce that there exists some constant Eε

such that for all pairs (p,pε),

dimµp 6 dimµpε + Eε.

We conclude that for sufficiently small ε > 0

sup
p

dimµp 6 1−Gε + Eε 6 1− Gε
2

completing the proof of Theorem 3.3.1.

Finally, Chapter 6 contains work on a different problem to the last three chap-

ters. Rather than considering invariant measures for expanding maps, we consider

measures which are supported on a self-affine set associated to a particular iterated

function system. In particular, we restrict our attention to a class of self-affine

carpets which was introduced by Fraser in [Fr1], intended to be a generalisation of

the classical ‘orientation preserving’ self-affine carpets which have appeared in the

literature beginning with the work of Bedford and McMullen [Be; Mc]. The goal of

this chapter is to prove the exact-dimensionality of certain Gibbs measures µ which

are supported on these self-affine carpets, meaning that the local dimension

lim
r→0

logµ(B(x, r))

log r
(1.5)

exists and is constant µ-almost everywhere, and furthermore is given by a ‘Ledrappier-
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Young formula’ which is an expression involving the entropy, Lyapunov exponents

and dimension of projections of µ. This is the main result, Theorem 6.3.1. The

Gibbs measure µ is sometimes known as the Käenmäki measure, referring to a pa-

per of Käenmäki [K] where such measures were first considered in this context. µ is

a Gibbs measure for a sub-multiplicative potential φs, known as the singular value

function, which was introduced in a pioneering paper of Falconer in [F2] where it

was used to evaluate the dimension of ‘typical’ self-affine sets. This interpretation of

φs means that a direct consequence of Theorem 6.3.1 is the existence of an ergodic

measure of maximal dimension for some self-affine sets belonging to our class.

The motivation for Theorem 6.3.1 was a recent paper of Bárány and Käenmäki

[BK], who verified the exact dimensionality of quasi-Bernoulli measures for a very

general class of self-affine sets. However, the multiplicative properties of φs com-

bined with the nature of the self-affine carpets we consider (in particular, the fact

that they do not fit into the classical ‘orientation preserving’ setting) means that

in our case the conditions from [BK] are not satisfied and that furthermore our

measure is not quasi-Bernoulli. This latter fact makes exact-dimensionality incred-

ibly difficult to verify, since a proof of this property typically requires obtaining

both upper and lower bounds for the measure µ(B(x, r)) which appears in (1.5),

and without a supermultiplicative property this makes it impossible to implement

standard approaches. A solution to this issue emerges from an examination of the

structure of the measure when considered on a ‘larger’ symbolic space. The inter-

pretation of the measure on this ‘larger’ space captures the heart of this chapter and

is both of independent interest as well as forming the backbone of the proofs. In

particular, we show that µ can be written in terms of two quasi-Bernoulli measures

on the new symbolic space. This allows us to derive an interesting characterisation

for the Lyapunov exponents and aids us in obtaining the appropriate bounds for the

measure µ(B(x, r)) for a µ-typical point, allowing us to prove exact-dimensionality.
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Chapter 2

Preliminaries

We begin by introducing some basic notions from dynamical systems and ergodic

theory. Let the triple (X,B, µ) denote the space X equipped with a σ-algebra B
of measurable subsets of X and a probability measure µ. Let T : X → X be a

transformation. Then we say that (T,X) is a dynamical system. Given a point

x ∈ X we say that {x, Tx, T 2x, . . .} is the orbit of x under T . For a subset A ⊂ X

denote T−1(A) = {x ∈ X : T (x) ∈ A}. We say that T is measurable if for all

A ∈ B, T−1(A) ∈ B. We say that T is measure preserving if µ(T−1(A)) = µ(A) for

all A ∈ B, and in this case we may also say that µ is T -invariant (or just invariant,

whenever the choice of map is clear). We’ll denote the set of all T -invariant measures

by MT (X).

We say that T is ergodic if for any A ∈ B which satisfies T−1(A) = A then

either µ(A) = 0 or µ(A) = 1. Although T can have many ergodic measures, distinct

ergodic measures µ1 and µ2 are mutually singular, meaning that there exists A ∈ B
for which µ1(A) = µ2(X \A) = 1. Given an ergodic transformation, we can deduce

various statistical properties of T . The most well-known of these is the Birkhoff

ergodic theorem, which connects the average of a potential f along the orbit of a

µ-typical point with the space average of f .

Theorem 2.0.1 (Birkhoff Ergodic Theorem). Let T : (X,B, µ) → (X,B, µ) be an

ergodic measure preserving transformation such that µ(X) = 1. Let f ∈ L1(µ).

Then

lim
n→∞

1

n

n−1∑
k=0

f(T k(x)) =

∫
fdµ

for µ almost every x ∈ X.

We denote Snf(x) =
∑n−1

k=0 f(T k(x)) and call this a Birkhoff sum and we call
1
nSnf(x) = 1

n

∑n−1
k=0 f(T k(x)) a Birkhoff average. Notice that if we define fn(x) =
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Snf(x) then the Birkhoff Ergodic Theorem tells one about the existence of the limit

limn→∞
fn(x)
n for the additive sequence fn. The following result, due to Kingsman,

can be viewed as a generalisation of Birkhoff’s ergodic theorem for sub-additive

sequences. This will be useful for guaranteeing the existence of limits of sub-additive

sequences of functions.

Theorem 2.0.2 (Sub-additive Ergodic Theorem). Let T : (X,B, µ)→ (X,B, µ) be

an ergodic measure preserving transformation such that µ(X) = 1. Let {fn}n∈N be

a sub-additive sequence in L1(µ), meaning that fn+m(x) 6 fn(x) + fm(Tnx) for all

x. Then there exists some constant α ∈ R such that

lim
n→∞

fn(x)

n
= α

for µ almost every x ∈ X.

The measure-theoretic (or ‘metric’) entropy of a measure preserving transfor-

mation will play a central role throughout the thesis. Let T : (X,B, µ)→ (X,B, µ)

be a measure-preserving transformation of a probability space and α be a finite or

countable partition of X into measurable sets.

The entropy of the partition α is defined as

Hµ(α) = −
∑
A∈α

µ(A) logµ(A).

For two partitions α and β denote α ∨ β = {A ∩ B : A ∈ α,B ∈ β} to be the join

of α and β. We denote T−1α = {T−1A : A ∈ α}. Then we define the entropy of T

with respect to the countable or finite partition α to be

hµ(T, α) = lim
n→∞

1

n
Hµ

n−1∨
j=0

T−jα

 .

Finally, the measure-theoretic entropy of T with respect to µ is defined as

hµ(T ) = sup{hµ(T, α)}

where the supremum is taken over all finite or countable partitions α for which

Hµ(α) <∞.

By a well-known theorem of Kolmogorov and Sinai (e.g. [W2, Theorem

4.1.7]), hµ(T ) = hµ(T, α) for any partition α such thatHµ(α) <∞ and
∨n−1
j=0 T

−jα→
B as n→∞. We also have the following important theorem which gives an alterna-
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tive characterisation for the entropy when T is ergodic (see for instance the remark

below Corollary 4.14.4 in [W2]).

Theorem 2.0.3 (Shannon-McMillan-Breiman Theorem). Let T : (X,B, µ)→ (X,B, µ)

be an ergodic measure-preserving transformation of a probability space and let α be

a finite partition of X. Let Bn(x) denote the unique member of
∨n−1
j=0 T

−jα to which

x belongs. Then

− lim
n→∞

1

n
logµ(Bn(x)) = h(T, α)

for µ-almost every x.

2.1 Symbolic Dynamics

In this section we discuss symbolic dynamics, in particular topological Markov shifts

which serve as an important model throughout this thesis. Let A be either a finite

or countable alphabet, and we restrict to the cases where A = {1, . . . ,m} or A = N.

Let A be a matrix with rows and columns indexed by the digits of A, where for

each pair i, j the entry Ai,j = 0 or 1. We say that A is aperiodic if there exists some

n > 1 such that all the entries of An are positive. Define

ΣA = {i = (in)∞n=1 ∈ AN : Ain,in+1 = 1}

and σ : ΣA → ΣA to be given by σ((in)∞n=1) = (in+1)∞n=1. We call (ΣA, σ) a one-

sided subshift of finite type. When the matrix A has entries all equal to 1 we say

this is the full shift. We say that i1 . . . ik is an admissable word if Ain,in+1 = 1 for all

1 6 n 6 k − 1. For an admissable word i1 . . . ik we define the cylinder set [i1 . . . ik]

to be all j = (jn)∞n=1 for which jn = in for 1 6 n 6 k. We sometimes call [i1 . . . ik] a

level k cylinder. We also introduce the following notation: for i ∈ ΣA we define i|n
to be the finite word obtained by truncating i after n symbols. Also we denote Σ∗

to be the set of all finite admissable words over the alphabet A. For any i, j ∈ Σ∗,

we let ij denote the concatenation of i and j. Note that ij is not automatically

admissable, so it is not necessarily true that ij ∈ Σ∗. Let |i| denote the ‘length’ of

the finite word i ∈ Σ∗, i.e. if i = i1 . . . ik then |i| = k. Given i, j ∈ Σ we define

i ∧ j ∈ Σ ∪ Σ∗ to be the longest initial block common to both i and j. We define a

metric d on Σ by setting d(i, j) = e−|i∧j| if |i∧ j| <∞ and d(i, j) = 0 otherwise. The

metric d defines a topology on Σ. The σ-algebra of open sets is generated by the

set of cylinder sets. Σ is compact if A is finite and not compact if A is infinite.

A key object of our study will be invariant measures on the symbolic space.

We will now introduce three important classes of shift-invariant measures.
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2.1.1 Bernoulli measures

Let (Σ, σ) be the full shift on the alphabet A, where A = {1, . . . , k} or A = N. Let

p = (p1, p2 . . .) be a probability vector, that is, 0 6 pi 6 1 with
∑

i∈A pi = 1.

By the Kolmogorov extension theorem, to define a Borel measure on Σ it is

sufficient to define a measure on the cylinder sets. We define the measure mp on

the cylinder sets of Σ by

mp([i1 . . . in]) = pi1 . . . pin

and say that mp is a Bernoulli measure for p. Then (σ,Σ,mp) is an ergodic measure

preserving system.

2.1.2 Gibbs measures

A probability measure m on Σ is called a Gibbs measure if there exists a continuous

function g : Σ→ Σ and constants C > 0, P ∈ R such that

C−1 6
m([i1, . . . , in])

eSng(i)−nP
6 C (2.1)

for all i ∈ Σ and n > 1. Then we say that µ is a Gibbs measure of g and we call g

the Gibbs potential.

Note that in our definition, we do not require m to be invariant and in-

deed there are examples of Gibbs measures which are not invariant. We give some

motivation for studying Gibbs measures in Section 2.5 and learn about sufficient

conditions for their existence in various contexts.

2.1.3 Quasi-Bernoulli measures

We say that a measure m on Σ is quasi-Bernoulli if there exists a constant 0 < C <

∞ such that for all i, j ∈ Σ∗,

C−1m([i])m([j]) 6 m([ij]) 6 Cm([i])m([j]). (2.2)

It is easy to see that any Gibbs measure for a Hölder continuous function f

is a quasi-Bernoulli measure.
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2.2 Expanding maps and Markov partitions

Let T : [0, 1] → [0, 1] be either a continuous map, or a continuous map when

considered as a map of the circle R/Z. Then T : [0, 1] → [0, 1] consists of a finite

or countable number of continuous branches, and we assume that each of them are

C1. We say that T is expanding if |T ′| > 1. Since a symbolic dynamical system

is easy to study, we are interested in what properties of T give rise to a ‘symbolic

coding’, which we will shortly make precise. The answer lies with the idea of a

Markov partition.

Markov partitions are a useful way of partitioning the space that a dynamical

system acts on by providing a useful tool for developing a ‘symbolic coding’ of T .

Let T : [0, 1]→ [0, 1] satisfy the above conditions. We say that a (finite or countable)

collectionM = {Ii : i ∈ A ⊂ N} of open non-empty subintervals of [0, 1] is a Markov

partition of T if

1. T |Ii : Ii → T (Ii) is a homeomorphism

2. {Ii}i∈A are pairwise disjoint

3. If T (Ii)∩ Ij 6= ∅ for some i, j ∈ A, then Ij ⊂ T (Ii), where ∅ denotes the empty

set.

If T admits a Markov partition we say T is a Markov map. Then one can build a

symbolic coding for T by a suitable subshift ΣA, where the transition matrix A is

constructed by considering pairs i, j which satisfy the third condition above.

Instead of describing this general construction in detail, we will just describe

how to build a Markov partition and corresponding symbolic coding for the type of

maps that are considered in this thesis. A more general version of the results below

can be found for instance in [KMS, Theorem 1.2.26].

Let {In}n∈N be a countable collection of non-empty disjoint subintervals of

[0, 1] such that (0, 1) ⊂
⋃
n∈N In and let Tn : In → [0, 1] be a sequence of expanding

bijective C1 maps. Define T :
⋃
n∈N In → [0, 1] as

T (x) = Tn(x) if x ∈ In

where we put T (x) = Tk(x) for k = min{n : x ∈ In} if x is a common endpoint of

two intervals. In this case, the Markov partition is just the sequence {Ii}∞i=1.

Denoting Σ as the full shift on N, we can define a canonical coding map

Π : Σ→ [0, 1] \
⋃∞
n=0 T

−n({0}) by

Π(i) = lim
n→∞

T−1
i1
◦ · · · ◦ T−1

in
([0, 1]).

11



Then Π is a continuous surjection and Π ◦ σ = T ◦Π. We say that T is coded by the

full shift (on the countable alphabet). Given i ∈ Σ∗ we will call Π([i]) a projected

cylinder set or simply a cylinder set.

Finally, notice that E =
⋃∞
n=0 T

−n({0}) is a countable set of points. We call

J = [0, 1] \
∞⋃
n=0

T−n({0})

the repeller of T . One can study the dynamics of (J, T ) via the dynamics of (Σ, σ).

2.3 Dimension and measure theory

This thesis will primarily be concerned with studying the dimension theory of sets

and measures. There are many different notions of the dimension of a set but,

roughly speaking, they all provide some description of how much space a set fills

and the amount of irregularity of a set when viewed at small scales. The dimension

of a set can be used as a finer measure of the size of the set, for instance when

the Lebesgue measure of the set is 0. In this thesis, we will only deal with the

Hausdorff dimension of sets, which is the oldest notion based on a construction of

Carathéodory.

For a non-empty subset U ⊂ Rd, define the diameter of U as |U | = sup{|x−
y| : x, y ∈ U}, that is, the greatest possible distance between two points in U . Given

a subset F ⊂ Rd and a finite or countable collection of subsets {Un}n∈N that cover

F , i.e. F ⊂
⋃
n∈N Un, we say that {Un}n∈N is a δ-cover of F if |Un| 6 δ for all n ∈ N.

For s > 0 define

Hsδ(F ) = inf

{∑
n∈N
|Un|s : {Un}n∈N is a countable δ cover of F

}

that is, we look at all covers of F by sets of diameter at most δ and seek to minimise

the sth powers of the diameters of the sets in our cover. As δ decreases, the class of

possible covers decreases, thus Hsδ(F ) increases and then we define

Hs(F ) = lim
δ→0
Hsδ(F ) = lim inf

δ→0

{∑
n∈N
|Un|s : {Un}n∈N is a countable δ cover of F

}
.

It is possible to show that for each s,Hs is a measure, and we call it the s-dimensional

Hausdorff measure. Hs is clearly decreasing with s and is either infinite or 0 apart

from one possible exception where it can be either 0, infinite, or positive and finite.
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The Hausdorff dimension of A is then defined as this critical value and denoted by

dimHA = inf{s : Hs(F ) = 0} = sup{s : Hs(F ) =∞}.

In this thesis we shall be more focused on the dimension of measures, which

again can be defined in several different ways. For a Borel probability measure µ

the Hausdorff dimension is defined as

dimH µ = inf{dimHA : A Borel such that µ(A) = 1}.

Roughly speaking, this corresponds to the dimension of the set that the measure

‘sees’. Another perhaps more intuitive notion of the dimension of a measure is the

local dimension of a measure, where it exists. The upper and lower local dimensions

of a Borel probability measure µ at a point x in its support are defined by

dimloc(µ, x) = lim sup
r→0

logµ
(
B(x, r)

)
log r

and dimloc(µ, x) = lim inf
r→0

logµ
(
B(x, r)

)
log r

.

If the upper and lower local dimensions coincide, we call the common value the

local dimension and denote it by dimloc(µ, x). This describes the rate at which the

measure of a small ball about a µ-typical point scales as the radius of the ball is

decreased. This notion is particularly important because if there exists a constant α

such that the local dimension exists and equals α at µ almost all points then we say

the measure µ is exact dimensional and in particular, if µ is exact dimensional then

all the definitions of the dimension of a measure coincide with the exact dimension

α.

We now present some results from measure theory which will be used in the

thesis.

If a measure µ is absolutely continuous with respect to a measure ν, we

write µ� ν. The following proposition (e.g. [MMR, Lemma 2.4]) is useful to verify

exact-dimensionality whenever we have a measure which is absolutely continuous

with respect to an exact-dimensional measure.

Proposition 2.3.1. Suppose ν is a non-null finite Borel measure on Rd with exact

dimension α. Let µ be any non-null finite Borel measure µ on Rd with µ� ν. Then

µ is exact dimensional with exact dimension α.

The following results about derivatives of measures will also come in useful,

see for instance [Ma, Theorem 2.12].

Proposition 2.3.2. Let µ, λ be inner regular probability measures on Rd (by inner
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regular we mean that for each m = µ, λ, m(B) is the supremum of m(K) over all

compact subsets K of B, for any Borel set B). Then:

1. For λ-almost every x ∈ Rd,

lim
r→0

µ(B(x, r))

λ(B(x, r))

exists and is finite.

2. µ� λ if and only if

lim inf
r→0

µ(B(x, r))

λ(B(x, r))
<∞

for µ-almost every x ∈ Rd.

We also recall a well-known result of Egorov about convergence of functions

in a measure space.

Theorem 2.3.3 (Egorov’s Theorem). Let {fn}n∈N be a sequence of real-valued func-

tions on a probability space (X,B, µ) and suppose that fn → f µ-almost everywhere.

Then for all ε > 0 there exists a set A ∈ B with µ(A) > 1 − ε such that fn → f

uniformly on A.

2.4 Iterated Function Systems

We say that f : Rd → Rd is a contraction if there exists a contraction ratio 0 < c < 1

such that for all x, y ∈ Rd

|f(x)− f(y)| 6 c|x− y|.

Let F = {f1, . . . , fn} be a finite collection of contractions fi : Rd → Rd. We call the

family F an iterated function system (IFS). Iterated function systems are one of the

main tools that are used to construct fractal sets, due to the following fundamental

result which dates back to work of Hutchinson [H].

Theorem 2.4.1 (Hutchinson). Let F be an iterated function system. Then there

is a unique compact non-empty subset Λ such that

Λ =

n⋃
i=1

fi(Λ).
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In particular, we call the unique set whose existence is guaranteed by Theo-

rem 2.4.1 the attractor of the IFS.

Often the attractor of an IFS has a more complex structure and is more dif-

ficult to analyse if the parts {fi(Λ)} overlap too much. Thus, separation conditions

are often imposed, two of which we detail below.

Definition 2.4.2. An IFS F = {fi : i ∈ {1, . . . n}} and its attractor Λ are said to

satisfy the Open Set Condition (OSC) if there exists a non-empty open set U such

that
n⋃
i=1

fi(U) ⊂ U

where the union is disjoint.

Definition 2.4.3. An IFS F = {fi : i ∈ {1, . . . n}} and its attractor Λ are said to

satisfy the Strong Separation Condition (SSC) if fi(Λ)∩ fj(Λ) = ∅ for i 6= j, where

∅ denotes the empty set.

2.4.1 Symbolic coding of IFS and attractors

Typically, attractors of iterated function systems are studied by building a symbolic

space from the index set, since the geometry of the symbolic space is more convenient

to work with than the more complex geometry of the attractor. Let F = {f1, . . . , fn}
be an iterated function system and let Σ denote the full shift on the alphabet

{1, . . . , n}. For a finite word i = i1 . . . ik define

fi = fi1 ◦ · · · ◦ fik .

Then we define a natural projection Π : Σ → Λ from the symbolic space to the

geometric space by

Π(i) =
⋂
n∈N

fi|n(X)

which will allow us to move between the two spaces.

Importantly for us, the projection Π allows us to take a measure m on Σ and

obtain an associated measure µ = m ◦Π−1 which is supported on Λ.

2.4.2 Self-similar sets

The simplest type of iterated function system is a self-similar iterated function

system F = {f1, . . . , fn} where all of the maps fi : Rd → Rd are similarities, that
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is, for each i there exists a constant ci such that for all x, y ∈ Rd,

|fi(x)− fi(y)| = ci|x− y|.

The resulting attractor is then called a self-similar set. A well-known example of

such a set is the middle-third Cantor set, which is the attractor of the IFS F made

up of the maps f1, f2 : R→ R given by f1(x) = x
3 , f2(x) = x

3 + 2
3 .

The dimension theory of self-similar sets is fairly well understood, at least

in the non-overlapping setting. Given a self-similar IFS made up of k maps with

similarity ratios ci and associated attractor Λ, the similarity dimension dimS Λ is

defined to be the unique solution in s to the formula

k∑
i=1

csi = 1.

If F satisfies the OSC, dimH Λ = dimS Λ. In contrast, when the OSC is not satisfied

dimS Λ is still an upper bound for dimH Λ but beyond that, the dimension theory

is far from understood. For instance, it is known that a ‘dimension drop’ can occur

if different iterates of maps in the IFS overlap exactly, but it is a difficult open

problem to establish whether this is the only way in which the dimension can drop.

Indeed, there is a folklore conjecture which says that a ‘dimension drop’ occurs only

in the presence of exact overlaps. Hochman [Ho] recently made important progress

towards proving this conjecture by verifying that exact overlaps are the only cause

of a dimension drop in the case that the maps in the IFS are one-dimensional with

algebraic parameters.

2.4.3 Self-affine sets

Self-similar sets which were discussed in the previous section are special examples of

a much more general class of sets known as self-affine sets; the key difference being

that in a self-affine iterated function system, the maps are now permitted to have

different contraction ratios in different directions.

In particular, F is a self-affine IFS if F contains affine transformations, that

is,

F = {Ai + ti : i ∈ {1, . . . , n}}

where each Ai is a linear map and each ti is a translation. In this case, we say that

the attractor Λ is a self-affine set.

Allowing the maps in a self-affine IFS F to have different contraction ratios
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in different directions causes the self-affine attractor to be markedly more difficult

to study. For this reason, research in the dimension theory of self-affine sets has

been forced to follow one of two distinct lines of thought since the 1980s.

The first line of thought is the ‘generic’ approach, pioneered by the work of

Falconer beginning with [F2]. With this outlook, one seeks to find the dimension

of a generic self-affine set, in the sense of Lebesgue typical translations, while the

linear parts of the maps are fixed from the outset. This allows one to get a value

for the dimension of a ‘typical’ self-affine set.

In the other approach, one seeks to obtain a definite value for the dimension

of a self-affine set (rather than an almost sure result as above), although this time

it is at the cost of restricting to a specific type of self-affine set. This line of thought

was pioneered by Bedford and McMullen [Be; Mc], and since then has revolved

around the study of various constructions of ‘self-affine carpets’.

Although our focus in this thesis will be the dimension of measures that

are supported on a self-affine set - rather than the self-affine set itself, there are

elements from the history of both of the above perspectives which will be relevant

to the problem studied in Chapter 6. Therefore we briefly summarise the important

results, which will hopefully give the objects studied in Chapter 6 some context.

For a more thorough survey of dimension results for self-affine sets, the reader is

directed to [F4].

Dimension of a ‘typical’ self-affine set

Before we can discuss the results of Falconer [F2] and the work that followed, we

must introduce the notion of the singular values of a linear map. Let A : Rd → Rd

be a linear map, so that A is a d×d matrix. The singular values of A are the positive

square roots of the eigenvalues of ATA where AT denotes the transpose of the matrix

A. Geometrically, the singular values correspond to the lengths of the semi-axes of

the image of the unit ball under A. Thus, the singular values represent how much

the map A contracts or expands distances in different directions. Thus, one can see

that it would make sense for the dimension of a self-affine set to be closely related

to the singular values of the matrices which appear in the construction.

It is conventional to order the d singular values of a contracting linear map

A : Rd → Rd like

1 > α1 > α2 > · · · > αd > 0.

Let F = {f1, . . . , fk} be a self-affine IFS, so each of the maps fi = Ai + bi for some

d× d matrix Ai and translation vector bi. For a finite word i ∈ Σ∗ denote αr(i) to
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be the rth singular value of the linear part of fi, that is, the rth singular value of

Ai. Observe that with this notation, we can also take i ∈ Σ and write αr(i|n) to

be the rth singular value of Ai|n . (Note: we may use the notation αr(Ai) and αr(i)

interchangeably for i ∈ Σ∗).

Using this notation, we are ready to introduce the singular value function

φs : Σ∗ → R+ which was first introduced by Falconer in [F2]. For s ∈ [0, d], and

i ∈ Σ∗, define φs(i) by

φs(i) = α1(i) · · ·αdse−1(i)α
s−dse
dse .

(Note: as above, we may also sometimes use the notation φs(Ai) instead of φs(i)).

Using this function, Falconer defined the affinity dimension (sometimes called

the singularity dimension) dimA F of the self-affine attractor F to be

dimA F = inf

s :
∞∑
n=1

∑
i∈{1,...,k}n

φs(i) <∞


= inf

s : lim
n→∞

1

n
log

 ∑
i∈{1,...,k}n

φs(i)

 6 0


where the limit within the second displayed equation exists by the sub-additivity of

φs. Using covering arguments, Falconer showed that dimA F was always an upper

bound for the dimension of a self-affine set F . Moreover, by considering a natural

cover of F he proved that for ‘typical’ translations it was equal to the Hausdorff

dimension of the set.

Theorem 2.4.4. Let {Ai}ki=1 be a collection of d×d matrices where each Ai satisfies

the bound on its matrix norm ‖Ai‖ = α1(Ai) <
1
2 . Then for Lebesgue almost all

translations (t1, . . . , tk) ∈ Rkd, the attractor F of the self-affine IFS F = {Ai + ti :

i = 1, . . . , k} satisfies

dimH F = min{dimA F, d}.

In fact, initially the above result was proved in [F2] with the stronger assump-

tion that all the norms ‖Ai‖ < 1
3 , but in [So], Solomyak weakened the condition to

the current form. Moreover, an upper bound of 1
2 was proved to be sharp by an

example of Prztycyki and Urbański in [PU1].

The singular value function φs will be of particular importance to us since

the measure whose dimension we study in Chapter 6 is the Gibbs measure for log φs.
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Self-affine carpets

As discussed earlier, the other direction considered in the literature concerning the

dimension of self-affine sets is the approach of restricting to a specific type of self-

affine set and obtaining a value for the dimension. This strategy has centred around

various constructions of ‘self-affine carpets’. The pioneers of this line of research

were Bedford and McMullen [Be; Mc], who independently considered the following

construction.

Example 2.4.5 (Bedford-McMullen carpets). Take the unit square [0, 1]2 and divide

it into a regular m×n grid, where the number of rows m is greater than 1 and is at

most the number of columns n, i.e. 1 < m 6 n.

Select a family of rectangles {Ui}li=1 formed by this grid and define the affine

map Si to be the one that maps [0, 1]2 to Ui. We define the Bedford-McMullen carpet

in this case to be the attractor of the IFS F = {Si : i ∈ {1, . . . , l}}.

Due to the simplicity of this model, this allowed the dimension of the attrac-

tor F to be calculated explicitly.

Theorem 2.4.6 (Bedford, McMullen). Let F be the attractor for the above con-

struction. Then

dimH F =

log

(∑m
i=1N

logm
logn

i

)
logm

(2.3)

where Ni denotes the number of maps in the ith column.

Observe that since the affinity dimension depends only on the number of

maps and the contraction ratios (which depend on m and n), whereas the expression

in (2.3) depends also on Ni (which is a quantity related to the translations of the

maps in the IFS), the Hausdorff dimension of a Bedford-McMullen carpet can in

fact be strictly less than the affinity dimension.

Pollicott and Weiss [PW2], Lalley and Gatzouras [GL], Barański [Ba1] and

Feng and Wang [FW] studied variants on this construction, with one thing in com-

mon: the orientation of the maps in each of these models was always preserved. In

[Fr1], Fraser introduced self-affine carpets where the maps were now allowed to have

non-trivial rotational and reflectional components. By studying a modified version

of the classical singular value function, Fraser was able to compute the box and

packing dimensions of these carpets. This is in fact the family of self-affine sets that

we will work with in Chapter 6, so we delay their precise definition till then.
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2.4.4 Measures supported on attractors

In this thesis, we won’t so much be concerned with the dimension of attractors

themselves, but rather with the dimensions of measures which are supported on the

attractors of iterated function systems (although of course sometimes this can give

information about the dimension of the attractor itself).

Fix an IFS F = {Si : i = 1, . . . , l} with an attractor F , which is coded by

the shift space Σ. Let m be a measure on Σ. Then we can use the coding map

Π : Σ→ R to define a measure µ = m ◦Π−1 which is supported on the attractor F .

For example, given a Bernoulli measure m, we call m ◦ Π−1 a self-similar

measure if F is a self-similar set. Similarly, we say that m ◦ Π−1 is a self-affine

measure if F is a self-affine set. Therefore any self-affine (or self-similar) measure

satisfies

µ =
l∑

i=1

piµ ◦ S−1
i

for some probability vector (p1, . . . , pl).

Another common type of measures which are studied are projected Gibbs

measures. In some circumstances, the Gibbs measure may satisfy the quasi-Bernoulli

property (2.2), for instance when the Gibbs potential is Hölder. In Chapter 6 we

will consider projected Gibbs measures for the singular value function φs, which in

our case will not be quasi-Bernoulli.

The appropriate notions of entropy and Lyapunov exponents for projected

measures will play a key role in Chapter 6. Fix an ergodic measure m on Σ, and let

µ = m ◦ Π−1. The following important result due to Oseledets [O] guarantees the

existence of Lyapunov exponents.

Theorem 2.4.7 (Oseledets). There exist positive constants, which we call Lya-

punov exponents 0 < χ1(µ) 6 χ2(µ) 6 · · ·χd(µ) < 1 such that for m almost all

i ∈ Σ and 1 6 j 6 d we have

χj(µ) = − lim
n→∞

1

n
logαj(i|n).

Using the ergodicity of m, we can use the Shannon-McMillan-Breiman the-

orem 2.0.3 to define the entropy of µ.

Theorem 2.4.8. Let m be an ergodic σ-invariant measure on Σ and µ = m ◦Π−1.

We define the entropy of µ to be the constant h(µ) which satisfies

h(µ) = − lim
n→∞

1

n
logm([i|n])
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for m almost every i ∈ Σ.

The Lyapunov exponents and entropy of a measure are central objects in the

dimension theory of measures supported on attractors of IFS and in many cases the

dimension of a measure can be expressed purely in terms of these via a ‘Ledrappier-

Young formula’. For more detail on this and an overview of the study of dimensions

of measures which are supported on self-affine sets, refer to Chapter 6.

2.5 Thermodynamic formalism

In this section we introduce the tools from thermodynamic formalism which will be

used extensively in the proofs of many results throughout this thesis.

Thermodynamic formalism is a branch of ergodic theory which originated in

statistical mechanics. While the ergodic theorem provides us with a useful tool for

studying the orbits of typical points, it does not provide us with a ‘natural’ invariant

measure to equip the space with. Here ‘natural’ is used loosely and depends on the

characteristic of the dynamical system that one is interested in, such as for instance

an invariant measure which maximises dimension or entropy. Gibbs measures were

translated from statistical mechanics to the setting of dynamical systems by Ruelle

and Sinai beginning with [S], providing a class of invariant measures whose properties

were closely connected with the properties of the Gibbs potential. The subsequent

body of work that followed connecting Gibbs measures with other analogues of

notions from statistical mechanics such as pressure, equilibrium states and entropy

all in one beautiful and interwoven theory is now called thermodynamic formalism.

The connections established by this theory have proved to be powerful tools in

many areas of dynamical systems including its dimension theory, rates of mixing

and statistical properties of dynamical systems. The monographs of Bowen and

Ruelle [Bo; Ru] provide classical expositions of thermodynamic formalism in the

original settings in which it was developed.

Of course this body of work has since grown and indeed, thermodynamic

formalism will appear in a number of different settings in this thesis. Therefore

this section will be split into three parts, each of which summarises the relevant

results that will be used from each setting. Firstly, we briefly touch upon the

thermodynamic formalism of Hölder continuous potentials for the subshift of finite

type. Only very basic results from this setting will be used. Secondly, the most

detailed account of results from the thermodynamic formalism will be given for the

setting of the countable shift, which will be used throughout Chapters 3-5. Finally,

we will give an overview that contains the analogue of these ideas in the sub-additive
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setting, that is, for sub-additive potentials on a subshift of finite type. Results from

this setting will be used in Chapter 6.

2.5.1 Finite setting

The thermodynamic formalism for Hölder continuous potentials on a subshift of

finite type is well understood and a detailed account can be found in [PP]. However,

in this thesis the amount of results required from this setting is limited to knowing

about the existence of Gibbs measures and their characterisation. Therefore, these

are the only results we present here, all of which can be found in [PP].

Let A be an aperiodic matrix and (Σ, σ) be its associated subshift of finite

type. For a continuous function f : Σ→ C and n > 1 we define

varn(f) = sup{|f(i)− f(j)| : i|m = j|m for m < n}

to be the nth variation of f . Let 0 < δ < 1. Define

Fδ = {f : fcontinuous and for some C > 0 and for all n ∈ N, varnf 6 Cδn}.
(2.4)

If f ∈ Fδ we say that f is δ-Hölder continuous. We say that a function f : Σ → R
is Hölder continuous if f ∈ Fδ for some 0 < δ < 1.

We begin by defining the topological pressure of a Hölder continuous function.

Definition 2.5.1 (Pressure). Let f : Σ→ R be a Hölder continuous potential. Then

we define the topological pressure of f by

P (f) = lim
n→∞

1

n
log

( ∑
i:σni=i

exp(Snf(i))

)
.

In this setting, the pressure also satisfies a variational principle, providing

us with another characterisation of the pressure.

Theorem 2.5.2 (Variational principle). For any Hölder continuous function f ,

P (f) = sup

{
h(µ) +

∫
fdµ

}
(2.5)

where the supremum is taken over all σ-invariant probability measures.

We say that an invariant measure µ is an equilibrium state if it achieves the

supremum in (2.5), that is, P (f) = h(µ) +
∫
fdµ.
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Recall the definition of a Gibbs measure given in (2.1). An important result

that will be used in this thesis is that, given a Hölder continuous potential f , there

exists a unique invariant Gibbs measure that can be characterised using the pressure

and variational principle.

Proposition 2.5.3. Let f : Σ → R be a Hölder continuous potential. Then there

exists a unique invariant Gibbs measure µf for f and the constant P from (2.1) is

given by P = P (f). Moreoever, this is the unique equilibrium state for f .

Given a continuous function u : Σ→ Σ we say that u−u◦σ is a coboundary.

We say that two functions f, g : Σ → R are cohomologous (writing f ∼ g) if there

exists some continuous function u : Σ→ R for which

g = f + u− u ◦ σ. (2.6)

Note that two functions being cohomologous is an equivalence relation. Also observe

that if two functions f and g are cohomologous then their Birkhoff sums coincide

on periodic orbits, that is

Snf(i) = Sng(i)

for any i such that σni = i.

Coboundaries are useful since adding a coboundary to a function preserves

thermodynamic quantities, as demonstrated by the following result, see for instance

[PP, Proposition 3.6].

Proposition 2.5.4. Two Hölder continuous functions f and g have the same equi-

librium state if and only if f ∼ g + c, where c = P (f)− P (g).

2.5.2 Countable setting

The thermodynamic formalism of the symbolic space was developed in the setting

of the countable Markov shift by Mauldin and Urbański (e.g. [MU1; MU2; MU3])

and Sarig (e.g. [S1; S2]) in the turn of the 21st century. These references contain

many different sufficient conditions on both the subshift and potentials which give

results such as existence of Gibbs measures. However, in this thesis we will only be

considering the full shift on the countable alphabet and this means that many of

the results have a much simpler exposition. Therefore, in this section we will only

summarise the necessary results for the full shift (Σ, σ) on a countable alphabet.

Since the ultimate purpose of this section is to provide applications to a

countable branch expanding interval map, it is worth noting that equivalently if
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one is given such a map T which is coded by the full shift, then each result in this

section could be rewritten by using the notation relating to the map T rather than

the shift map σ. Indeed, throughout Chapters 3-5 we will use such a version of

each notion and result that appears this section. Also, we remark that many years

prior to the work of Mauldin, Urbański and Sarig (whose work was more focused

on pushing the boundaries of how much conditions could be weakened while still

preserving desirable thermodynamic formalism results) Walters [W] investigated

the thermodynamic formalism of countable branch expanding interval maps without

exploiting any symbolic coding, and a lot of the results that we will require could

be gleaned from his 1978 paper instead.

A potential f : Σ → R is said to be locally Hölder continuous if there exist

constants C > 0 and 0 < δ < 1 such that for all n > 1 the variations varn(f) decay

exponentially, that is,

varn(f) = sup
i1...in∈Nn

{|f(i)− f(j)| : i, j ∈ [i1, . . . , in]} 6 Cδn. (2.7)

If f satisfies this hypothesis for 0 < δ < 1 we say that f is δ-locally Hölder con-

tinuous. We denote the space of all δ-locally Hölder continuous functions by Fδ.

Notice that the key difference between this space and the space of Hölder functions

as defined in (2.4) is that there is no assumption on the 0th variations of f , that is,

f may not be bounded. Define the seminorm [f ]δ to be the smallest constant one

can take in (2.7). Therefore Fδ = {f : Σ→ R : [f ]δ <∞}. Let Fδ denote the space

of all bounded and δ-locally Hölder functions. Define the norm ‖·‖δ = [·]δ + ‖·‖∞
and observe that this makes (Fδ, ‖·‖δ) a normed space.

We also say that a locally Hölder potential f : Σ→ R is summable if∑
n∈N

exp(sup f |[n]) <∞. (2.8)

Both of the above conditions will be central for developing the thermody-

namic formalism.

We can define the topological pressure of a potential f as follows.

Definition 2.5.5 (Pressure). Let f : Σ→ R be a locally Hölder potential. Then the

pressure of f is given by

P (f) = lim
n→∞

1

n
log

( ∑
i:σni=i

exp(Snf(i))

)
.

Notice that the pressure can either be finite or infinite. We have an analogue
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of the variational principle in our countable setting, see for instance [MU1, Theorem

2.1.8].

Theorem 2.5.6 (Variational Principle). If f is locally Hölder then

P (f) = sup

{
h(µ) +

∫
fdµ

}
(2.9)

where the supremum is taken over all σ-invariant probability measures for which

−
∫
fdµ <∞

Similarly, we say that a measure µ is an equilibrium state for f if −
∫
fdµ <

∞ and h(µ) +
∫
fdµ = P (f).

If f is a locally Hölder summable potential then we know about the existence

of Gibbs measures, see for instance [MU2, Corollary 2.10] and [MU1, Theorem 2.2.9].

Proposition 2.5.7 (Existence of Gibbs measures). Let f : Σ → R be a locally

Hölder summable potential. Then f has a unique σ-invariant Gibbs measure µf ,

and the constant P = P (f). Moreoever, if −
∫
fdµf < ∞ then µf is the unique

equilibrium state for f .

In the setting of the countable shift, we say that f and g are cohomologous if

there exists some bounded locally Hölder continuous function u : Σ→ R for which

f = g + u− u ◦ σ.

We have an analogue of Proposition 2.5.4 for our countable setting, see for instance

[MU2, Theorem 3.3].

Proposition 2.5.8 (Equivalence of Gibbs measures). Let f, g : Σ → R be locally

Hölder potentials that have σ-invariant Gibbs measures µf and µg. Then µf = µg if

and only if f − g is cohomologous to a constant, that is, there exists some bounded

locally Hölder continuous function u : Σ→ R for which

f − g = c+ u− u ◦ σ.

It will be useful to understand the above notions from the point of view of

operator theory.

Assume g is a summable locally Hölder potential g ∈ Fδ. Then we can define

the transfer operator (sometimes known as the Perron-Frobenius operator or Ruelle
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operator) as Lg : Fδ → Fδ given by

(Lgw)(i) =
∑
σj=i

exp(g(j))w(j). (2.10)

Observe that the above sum is an infinite sum in our setting, hence the necessity

that g be summable. Also, observe that the iterates of Lg are given by

(Lngw)(i) =
∑
Tnj=i

exp(Sng(j))w(j).

We have a version of the well-known Ruelle-Perron-Frobenius theorem in our

setting. See for instance [S1, Corollary 2] and [MU2, Corollary 2.10].

Theorem 2.5.9 (Ruelle-Perron-Frobenius theorem). Suppose g is a summable lo-

cally Hölder potential. Then the following statements hold.

1. There exists a unique eigenmeasure µ̃g such that∫
Lgfdµ̃g = eP (g)

∫
fdµ̃g

and there exists a unique positive continuous function h for which Lgh = eP (g)h

and 0 < inf h < suph <∞.

2. µ̃g is a Gibbs measure for g.

3. There exists a unique invariant Gibbs measure µg for g. In particular, if we

consider the normalised operatorMg : Fδ → Fδ given byMgw = e−P (g)h−1Lg(hw)

(so that Mg1 = 1) then dµg = hdµ̃g and∫
Mgfdµg =

∫
fdµg.

The analytic properties of the pressure function P will come in useful. In

order to discuss the analytic properties of pressure we must first introduce the

(asymptotic) variance.

First, for f, g, h : Σ→ R, where g is locally Hölder, define the covariance by

σ2
µg(f, h) = lim

n→∞

1

n

∫ (n−1∑
k=0

f(σki)− n
∫
fdµg

)(
n−1∑
k=0

h(σki)− n
∫
hdµg

)
dµg(i)

(2.11)
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whenever the limit exists. When f = h in the above, we simply write σ2
µg(f, f) =

σ2
µg(f) as defined below.

Definition 2.5.10 (Variance). Let f, g : Σ→ R where g is locally Hölder. Then we

define the variance by

σ2
µg(f) = lim

n→∞

1

n

∫ (n−1∑
k=0

f(σki)− n
∫
fdµg

)2

dµg(i) (2.12)

whenever the limit exists.

The variance is invariant under adding a coboundary or a constant, that is,

if u : Σ→ R is locally Hölder and c ∈ R then

σ2
µg(f) = σ2

µg(f + u− u ◦ σ + c)

Also, it is a classical result that whenever the variance exists and
∫
fdµ = 0, we can

rewrite (2.12) as

σ2
µg(f) =

∫
f2dµg + 2

∞∑
n=1

(∫
f · f ◦ σndµg

)
. (2.13)

See for instance [PU2].

We are now ready to summarise the analytic properties of the pressure func-

tion in our setting. The following is given in a more general setting as [S1, Corollary

4].

Proposition 2.5.11 (Analyticity of pressure). Let f : Σ → R be a locally Hölder

continuous function and let

Dir(f) =

{g : g is locally Hölder and P (f + tg) <∞ for t in some neighbourhood (−ε, ε)}.
(2.14)

Let g ∈ Dir(f). Then t→ P (f+ tg) is real analytic in some neighbourhood (−ε0, ε0)

of t.

As a result of the above we can write down the derivatives of the pressure.

The following two results can be found for instance in [MU1, Propositions 2.6.13,

2.6.14].
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Proposition 2.5.12 (First derivative of pressure). Let f , g be locally Hölder and

t0 ∈ R. Suppose that t → P (tf + g) is analytic in some neighbourhood of t0. Then

the first derivative of the pressure is given as

dP

dt

∣∣∣∣
t=t0

=

∫
fdµt0f+g.

Proposition 2.5.13 (Second derivative of pressure). Let f , g be locally Hölder and

s0, t0 ∈ R. Suppose that t → P (sf + tg) is analytic for all pairs (s, t) in some

neighbourhood of (s0, t0). Then

∂2P

∂s∂t

∣∣∣∣
(s,t)=(s0,t0)

= σ2
µs0f+t0g

(f, g).

2.5.3 Sub-additive setting

In this section we present the thermodynamic formalism of the sub-additive poten-

tials that will be considered in Chapter 6. Sub-additive thermodynamic formalism

was developed as an extension of the standard thermodynamic formalism for addi-

tive potentials, in part due to its applications to the study of measures supported on

self-affine sets, see for instance [F3], [K]. Essentially, this theory is concerned with

generalising the classical results of Ruelle, Bowen and Walters which connects the

topological pressure with the measure theoretic entropy and Lyapunov exponents

via a ‘variational principle’, to the setting where additive potentials are replaced

by sub-additive potentials on Σ = {1, . . . , l}∞ (or more generally, a compact metric

space X, equipped with a continuous mapping T ).

We say that a sequence F = {log fn}∞n=1 of functions on Σ is sub-additive if

each fn is a continuous non-negative function on Σ such that

0 6 fn+m(i) 6 fn(i)fm(σni)

for each i ∈ Σ and n,m ∈ N.

28



In this setting, the pressure of the sub-additive sequence F can be defined as

P (F) = lim
n→∞

1

n
log

 ∑
i∈{1,...,l}n

fn(i)


= lim

n→∞

1

n
log

 ∑
i∈{1,...,l}n

exp(log fn(i))


where the limit exists by sub-additivity of the sequence F .

Thus, it should be clear from the second displayed equation above, that in

the sub-additive setting, the sequence log fn plays the role of Snf in the classical

setting. In particular, if we put fn = expSnf for all n ∈ N then P (F) = P (f) and

indeed we are in the additive case since

fn+m(i) = exp(Sn+mf(i)) = exp(Snf(i)) exp(Smf(σni)) = fn(i)fm(σni)

for each i ∈ Σ and n,m ∈ N.

Once P (F) is defined for a sub-additive potential, the goal is then to prove

a variational principle, analogous to (2.5). We will be dealing with a very specific

case of this theory which applies to the singular value function related to a family

of matrices. Therefore, our presentation of the theory will differ from the general

formulation provided above, with the hope of improving on the clarity of the expo-

sition. For a more general treatment of sub-additive thermodynamic formalism, the

reader is directed to [CFH].

Let {Ai}li=1 be a family of invertible d× d matrices. We denote Σ to be the

full shift on l symbols. Recall that the singular value function φs : Σ∗ → R+ was

defined for each 0 6 s 6 d by

φs(i) = α1(i) · · ·αdse−1(i)α
s−dse
dse

where αk(i) denotes the kth singular value of the matrix Ai.

It is known that φs is submultiplicative, that is,

φs(ij) 6 φs(i)φs(j)

for each i, j ∈ Σ∗; see for instance [F2, Lemma 2.1].
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This allows us to define the sub-additive pressure

P (s) = lim
n→∞

1

n
log

 ∑
i∈{1,...,l}n

φs(i)

 (2.15)

where the limit exists by the submultiplicativity of φs.

Remark 2.5.14. To reformulate this in the ‘standard’ sub-additive language, notice

that we can define fn(i) = φs(i|n), so that indeed each fn is continuous and non-

negative and

fn+m(i) = φs(i|n+m) 6 φs(i|n)φs(σni|m) = fn(i)fm(σni)

so that F = {log fn}∞n=1 is a sub-additive sequence. Then immediately we see that

P (F) = lim
n→∞

1

n
log

 ∑
i∈{1,...,l}n

fn(i)

 = lim
n→∞

1

n
log

 ∑
i∈{1,...,l}n

φs(i)

 = P (s).

For a σ-invariant probability measure µ ∈Mσ(Σ), we define

φs∗(µ) = lim
n→∞

1

n

∑
i∈Σn

µ([i]) log φs(i) (2.16)

where the limit converges by sub-additivity of log φs. This is sometimes referred

to as the Lyapunov exponent of {Ai}li=1 (e.g. [FK]) or the Lyapunov exponent of

{log φs(·|n)}∞n=1 (e.g. [CFH]), but since in our context the singular value function

is closely related to the Lyapunov exponents of the matrices Ai we will avoid this

terminology for the sake of clarity.

In [K], Käenmäki proved that we have the following variational principle.

Proposition 2.5.15 (Variational principle). For each 0 6 s 6 d we have the vari-

ational principle

P (s) = sup{φs∗(µ) + h(µ) : µ ∈Mσ(Σ)}. (2.17)

Moroever, the supremum is realised by an ergodic invariant measure.

We are interested in measures which realise the supremum in (2.17). In

particular, we say that µ is an s-equilibrium state if µ ∈Mσ(Σ) and

P (s) = φs∗(µ) + h(µ). (2.18)
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In [FK], Feng and Käenmäki proved that for each s, there in fact exists a

unique s-equilibrium state, and proved that it has a Gibbs property.

Remark 2.5.16. Note that in the sub-additive setting ‘Gibbs’ is meant in a different

sense. We say that a measure µ has the Gibbs property for the sub-additive function

log φs if there exists a constant C > 0 such that

C−1 exp(−nP (s))φs(i) 6 µ([i]) 6 C exp(−nP (s))φs(i) (2.19)

for all n ∈ N and i ∈ Σn.

Theorem 2.5.17. Let {Ai}li=1 be a collection of matrices in Rd which satisfy the

following ‘irreducibility’ condition: there exists a constant c > 0 and m ∈ N such

that for all i, j ∈ Σ∗ there exists some k ∈
⋃m
n=1 Σn for which

φs(ikj) > cφs(i)φs(j). (2.20)

Then P has a unique s-equilibrium state ms for each s > 0. Furthermore, ms is

ergodic and has the Gibbs property

C−1 exp(−nP (s))φs(i) 6 ms([i]) 6 C exp(−nP (s))φs(i) (2.21)

for all n ∈ N and i ∈ Σn. ms is the unique invariant probability Gibbs measure for

the potential log φs.

Therefore in order to use Theorem 2.5.17 one must determine whether the

‘irreducibility’ condition, which appears in Theorem 2.5.17 above, is satisfied. The

following definition for an irreducible collection of matrices will be relevant to an-

swering this question.

Definition 2.5.18. A family of d × d matrices {Ai}li=1 with entries in R is irre-

ducible over Rd if there is no non-zero proper linear subspace V of Rd such that

SiV ⊂ V for all 1 6 i 6 l.

For 0 < s 6 1, the ‘irreducibility’ condition formulated in Theorem 2.5.17

is satisfied when our collection of matrices is irreducible, in the sense of Definition

2.5.18, see for instance [Fe]. Moreover, if we set d = 2, then by [FSl] this condition

is satisfied if and only if {Ai}li=1 is irreducible. This provides us with the following

refinement of Theorem 2.5.17.

Corollary 2.5.19. Let {Ai}li=1 be an irreducible collection of matrices in R2. Then

P has a unique s-equilibrium state ms for each s > 0. Furthermore, ms is ergodic
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and has the Gibbs property

C−1 exp(−nP (s))φs(i) 6 ms([i]) 6 C exp(−nP (s))φs(i)

for all n ∈ N and i ∈ Σn. ms is the unique invariant probability Gibbs measure for

the potential log φs.
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Chapter 3

Dimension gap for Bernoulli

measures

3.1 Introduction

In this chapter, we will be concerned with so-called ‘dimension gaps’ for T -invariant

projected Bernoulli measures, where T is a countable (or finite) branch expanding

map.

Let {In}n∈Φ be a sequence of disjoint open sub-intervals of [0, 1] where Φ is

(for now) either a finite or countable index set. Let Tn : In → [0, 1] be a sequence

of bijective expanding C2 maps which simply correspond to the branches of the

map T : [0, 1] → [0, 1] which is defined as T (x) = Tn(x) if x ∈ In (taking care

at the boundary points of intervals, which we’ll make precise later) and T (0) = 0.

By using Markov partitions, one can construct a symbolic coding of T by the full

shift on either a finite or countable alphabet, depending on the cardinality of Φ. In

particular, we can define a coding map Π : Σ→ [0, 1] given by

Π(i) = lim
n→∞

T−1
i1
◦ · · · ◦ T−1

in
([0, 1]) (3.1)

where Σ = {1, . . . , k}N if Φ = {1, . . . , k} and Σ = NN if Φ = N, and Σ is equipped

with the full shift σ.

The repeller of the map T is defined as the set

J = [0, 1] \
∞⋃
n=0

T−n({0}) (3.2)

where the set of points that is removed is a countable set. For all i ∈ Σ we have
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T ◦ Π = Π ◦ σ and so the coding map Π allows us to move between the symbolic

model and the geometric model and importantly allows us to project σ-invariant

measures on Σ to T -invariant measures on [0, 1]. Our main focus will be (projected)

Bernoulli measures. Throughout this chapter we will denote by mp the Bernoulli

measure associated to the probability vector p = (pi)i∈Φ ∈ P, where P denotes

the simplex of all probability vectors. We will denote the corresponding projected

measure by µp = mp ◦Π−1, and also refer to µp as a Bernoulli measure.

We are interested in the Hausdorff dimension of Bernoulli measures, which

from now we will just refer to as the dimension and denote by dim. In particular,

we are interested in what properties of T give rise to a dimension gap, by which we

mean that

sup
p∈P

dimµp 6 1− c0 (3.3)

for some c0 > 0. The reason we refer to this as a dimension gap is because, by

the work of Walters [W] (which we’ll expand on in more detail in Section 3.2),

every map T that we’ll consider will admit a unique absolutely continuous invariant

probability measure µT , which corresponds to the unique invariant Gibbs measure

for the potential − log |T ′|. Therefore since dimµT = 1, (3.3) refers to the fact that

all Bernoulli measures have dimension which is uniformly bounded away from the

maximal realised dimension of an invariant measure.

While we are primarily interested in the countable branch setting, in order to

build up some intuition for the problem we begin by considering the simpler setting

of the finite branch expanding system, where we have the index set Φ = {1, ..., k}.
Firstly, suppose that − log |T ′| =

∑
log pn1In =: fp for some probability vector

p = (p1, . . . , pk), where the sum in the definition of fp is taken over all pn 6= 0.

Notice that since fp is locally constant, this means that T is necessarily a linear

map. Since µp coincides with the Gibbs measure µfp , it follows that µT = µp, that

is, µp is an absolutely continuous measure and dimµp = 1.

It is easy to verify this by considering an example. For instance, if we consider

the doubling map T (x) = 2x mod 1 and fix p = (1
2 ,

1
2) which corresponds to the

reciprocals of the slopes of the branches, then clearly µT = µp = L|[0,1], where L
denotes Lebesgue measure.

Next, suppose that T is a map for which − log |T ′| is cohomologous to the

potential fp for some p ∈ P, where P denotes the simplex of all probability vectors.

By Proposition 2.5.4 we can verify that again µT = µp, so the absolutely continuous

measure is again a Bernoulli measure. Therefore, we see that a map does not neces-
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sarily have to be linear for the measure of maximal dimension to be Bernoulli. On

the other hand, we can again use Proposition 2.5.4 and the variational principle to

verify that this is the only instance in which a Bernoulli measure can have dimension

1. Indeed, if − log |T ′| is not cohomologous to any potential fp then this implies

that µT 6= µp for any p by Proposition 2.5.4. Thus by the variational principle (2.5)

h(µp)−
∫

log |T ′|dµp < h(µT )−
∫

log |T ′|dµT = P (− log |T ′|).

Combining this with the fact that in the finite branch setting dimµp =
h(µp)
χ(µp) and

P (− log |T ′|) = 0 (both facts will be stated more generally and attributed properly

later in the chapter), it follows that dimµp < 1 for any p ∈ P. In fact we can

say more; since the map m → dimm ◦ Π−1 (restricted to Mσ(Σ)) is upper semi-

continuous and {mp : p ∈ P} is a compact subset of Mσ(Σ), it follows that there

exists q ∈ P such that

sup
p∈P

dimµp = dimµq < 1

that is, we have a dimension gap. Note however, that this approach gives no quan-

titative information about the size of the gap and it is a difficult open problem to

establish what µq actually is.

We’d like to study the analogue of this problem in the countable branch

setting. A key difficulty here is that the map m → dimm ◦ Π−1 (restricted to

Mσ(Σ)) is no longer necessarily upper semi-continuous and also {mp : p ∈ P} is

not compact. However, we will see that the problem still boils down to determining

‘how different’ the potentials − log |T ′| and fp are.

Therefore, for the rest of this chapter we fix Φ = N. The study of countable

branch expanding interval maps originates with the Gauss map G : [0, 1] → [0, 1]

given by G(x) = 1
x mod 1 if x > 0 and G(0) = 0. The Gauss map has attracted

a lot of interest in the literature due to its close connections with the continued

fraction expansions of real numbers. In the 1940s, Bissinger and Everett [Bis; E]

were interested in generalisations of the Gauss map which could give rise to real

representations of numbers, analogous to confinued fraction expansions, which they

coined f-expansions. In 1957, Rényi [R] extended their work and showed that under

some regularity conditions on f , one could determine the existence of an absolutely

continuous invariant measure.

We will be working in the setting of Expanding-Markov-Rényi maps which

we now introduce. From now let {In}n∈N be a countable collection of non-empty
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disjoint subintervals of [0, 1] and let Tn : In → [0, 1] be a sequence of expanding

bijective C2 maps (so |T ′n| > 1). Define T : [0, 1]→ [0, 1] as

T (x) = Tn(x) if x ∈ In
T (0) = 0

where we put T (x) = Tk(x) for k = min{n : x ∈ In} if x is a common endpoint

of two intervals. Similarly, we adopt the convention that T ′(x) = T ′k(x) where

k = min{n : x ∈ In}. For n = n1 . . . nk ∈ Nk, we denote T−1
n = T−1

n1
◦ . . . T−1

nk
.

Let T : [0, 1] → [0, 1] be a countable branch expanding map as described

above for which (0, 1) ⊂
⋃
n∈N In. Then we say that T is an Expanding-Markov-

Rényi map (or EMR map) if it satisfies the following conditions:

(1) Some iterate of T is uniformly expanding. There exists l ∈ N and Λ > 1

for which

|(T l)′(x)| > Λl > 1

for all x ∈ [0, 1].

(2) Markov. T admits a Markov partition. (Note: under our assumptions this

is already satisfied and moreoever T is coded by the full shift on N).

(3) Rényi condition. There exists κ <∞ such that

sup
n∈N

sup
x,y,z∈In

∣∣∣∣ T ′′(x)

T ′(y)T ′(z)

∣∣∣∣ 6 κ <∞.

Remark 3.1.1. The thermodynamic formalism of maps that satisfy (1)-(3) were

studied by Walters in [W]. In [PW] Pollicott and Weiss introduced the term ‘Expanding-

Markov-Rényi’ to mean maps which satisfied the conditions given above except with

a more general Markov structure. In [IJ1] and [IJ2], Iommi and Jordan adopted

the term ‘Expanding Markov Rényi’ maps to mean ones which satisfied (1)-(3) and

were coded by the full shift, but for which the union of the intervals In no longer

necessarily exhausted (0, 1).

Before we proceed with attacking the dimension gap problem, we give some

examples of EMR maps and their important properties.

3.1.1 Examples of EMR maps

We now give some examples of Expanding-Markov-Rényi maps. One of the most

well-known examples of such a map is the Gauss map, sometimes known as the
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continued fraction map G : [0, 1]→ [0, 1] given by

G(x) =

{
1
x mod 1 x > 0

0 x = 0

To verify that conditions (1)-(3) hold, notice that since |G′(x)| → 1 as x → 1, G

itself is not uniformly expanding but if we consider the second iterate of the map

we see that condition (1) holds for l = 2 and Λ = 3
2 . Since |G′(x)| = 1

x2 and

|G′′(x)| = 2
x3 , the Rényi condition holds with κ = 16.

The Gauss map has been well studied due to its connections with the con-

tinued fraction expansion of a number. Given x ∈ (0, 1) \ Q, there exists a unique

sequence {an}n∈N, known as the continued fraction expansion of x such that

x =
1

a1 +
1

a2 +
1

a3 + . . .

where all of the digits an ∈ N. Then the Gauss map generates the continued fraction

expansion of a point x ∈ (0, 1) \ Q in the sense that the orbit of a point under G

encodes its continued fraction expansion via the intervals that it visits: an = k ⇔
Gn−1(x) ∈ ( 1

k+1 ,
1
k ).

Figure 3.1: Gauss map.
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α-Lüroth maps

The various Lüroth maps provide a class of linear examples of Expanding-Markov-

Rényi maps.

Let α = {An}n∈N be a countable partition of [0, 1] consisting of intervals

of the form (x, y] ordered from right to left starting with A1. Let |An| denote the

diameter of An and tn =
∑∞

k=n+1 |Ak| denote the combined length of the sets in the

partition that come after An. Then the α-Lüroth map is defined as

Lα(x) =

{
tn−x
|An| for x ∈ An
0 x = 0

These can be defined analogously to produce maps with monotone increasing branches.

Clearly Lα satisfies (1) for l = 1 and since it is a linear map, T ′′ = 0 so it

follows that the Rényi condition is also satisfied.

If we take the partition α = {( 1
n+1 ,

1
n ]}n∈N then we obtain the alternating

Lüroth map L : [0, 1)→ [0, 1)

L(x) =

{ (
1
n − x

)
n(n+ 1) x ∈

(
1

n+1 ,
1
n

]
0 x = 0

Figure 3.2: Alternating Lüroth map.
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f-expansions

For examples of non-linear Expanding-Markov-Rényi maps, we can consider trans-

formations T : [0, 1] → [0, 1] which arise from f -expansions. Let f either be a

strictly decreasing continuous function f : [1,∞) → (0, 1] such that f(1) = 1,

limx→∞ f(x) = 0 or let f be a strictly increasing continuous function f : [0,∞) →
[0, 1) such that f(0) = 0, limx→∞ f(x) = 1 and define the map T : [0, 1]→ [0, 1]

T (x) = f−1(x) mod 1. (3.4)

For x ∈ (0, 1) set r0(x) = x and ri+1(x) = f−1(ri(x)) mod 1 for i > 0. Let

X be the set of all x ∈ (0, 1) such that ri(x) > 0 for all i > 0 (which is the whole

interval minus some countable set of points) and for x ∈ X and i > 1 define

αi(x) = [f−1(ri−1(x))] ∈ N

where [·] denotes the integer part of a number. Under some assumptions, one can

deduce that

x = f(α1(x) + f(α2(x) + · · · )) (3.5)

for all x ∈ (0, 1), that is, the expansion on the right hand side of (3.5) converges to

x. When the representation in (3.5) exists, we call it the f -expansion of x.

f -expansions were introduced in the decreasing case by Bissinger [Bis], and

in the increasing case by Everett [E]. They were introduced as a generalisation

of the continued fraction expansion, in order to investigate real representations of

numbers. In [R], Rényi showed that under an assumption on the regularity of f ,

(3.5) holds for all x ∈ (0, 1). In particular, the condition in the decreasing case was

that |f(x) − f(y)| 6 |x − y| for all x, y > 1 and that there exists some λ < 1 such

that for all x, y > 1 + f(2), |f(x) − f(y)| 6 λ|x − y|. When f was increasing, the

condition was that |f(x)− f(y)| < |x− y| for all x, y > 0.

Note that in the decreasing case, when f : [1,∞)→ (0, 1] is given by f(x) = 1
x

then the map T is just the Gauss map and (3.5) just gives the usual continued

fraction expansion of x.

If the map T arising from the f -expansion satisfies properties (1)-(3), then

T is an EMR map.
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3.1.2 Properties of EMR maps

In this section we summarise some useful properties of Expanding-Markov-Rényi

maps which will be used extensively throughout the remainder of the chapter. Let

T : [0, 1]→ [0, 1] be an Expanding-Markov-Rényi map.

Firstly, the the uniformity of the lower bound for the rate of expansion of

(the lth iterate of) the map T gives rise to a uniform upper bound for the diameters

of projected cylinders. In this sense, the uniform rate of expansion of the map and

the uniform rate of contraction of the cylinders are essentially two sides of the same

coin.

Proposition 3.1.2. For all n ∈ N and (i1, . . . , in) ∈ Nn the diameter |Ii1,...,in | 6
Λl−1

Λn .

Proof. It is enough to show that for all n ∈ N, (Tn(x))′ > Λn

Λl−1 for any x ∈ Ii1,...,in .

Let n = kl +m where k ∈ N and 0 6 m 6 l − 1. Then by the chain rule,

|(Tn)′(x)| = |(T kl)′(Tmx)| · |(Tm)′(x)|

> |(T l)′(T (k−1)l+mx)| · |(T l)′(T (k−2)l+mx)| · · · |(T l)′(Tmx)|

> Λkl

where the second line follows because |(Tm)′(x)| > |T ′(x)| > 1 and the third because

|(T l)′(x)| > Λl. Thus,

|(Tn)′(x)| > Λkl =
Λn

Λm
>

Λn

Λl−1
.

By a slight abuse of notation we will adopt the same notation that was used

to denote the space of locally Hölder potentials on Σ in Section 2.5.2, in order to

denote the analogous space of real potentials.

We say that f : (0, 1)→ R is δ-locally Hölder if there exists C > 0 such that

for all n > 1 the variations varn(f) decay exponentially, that is,

varn(f) = sup
i1...in∈Nn

{|f(x)− f(y)| : x, y ∈ Ii1,...,in} 6 Cδn. (3.6)

Denote the space of all δ-locally Hölder functions by Fδ. We say that f is locally

Hölder continuous if f is δ-locally Hölder continuous for some 0 < δ < 1. Define

the seminorm [f ]δ to be the smallest constant one can take in (2.7). Therefore

Fδ = {f : (0, 1) → R : [f ]δ < ∞}. Let Fδ denote the space of all bounded and
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δ-locally Hölder functions. Define the norm ‖·‖δ = [·]δ + ‖·‖∞ and observe that this

makes (Fδ, ‖·‖δ) a normed space.

By combining the uniform contraction rate of cylinders (equivalently the

uniform expansion rate of the map) with the Rényi property we obtain the following

important result which tells us that log |T ′| is locally Hölder continuous.

Proposition 3.1.3. log |T ′| ∈ FΛ−1 and moreover, [log |T ′|]Λ−1 6 κΛl.

Proof. Let i1, . . . , in ∈ Nn for some n > 1 and x, y ∈ Ii1,...,in . Then

| log |T ′(x)|− log |T ′(y)|| 6 sup
w∈Ii1,...,in

∣∣∣∣T ′′(w)

T ′(w)

∣∣∣∣ |x− y|
6 sup

w∈Ii1,...,in

∣∣∣∣T ′′(w)

T ′(w)

∣∣∣∣ sup
u∈Ii1,...,in

∣∣∣∣ 1

(Tn)′(u)

∣∣∣∣
6 sup

w∈Ii1,...,in

∣∣∣∣T ′′(w)

T ′(w)

∣∣∣∣ sup
u∈Ii1,...,in

∣∣∣∣ 1

T ′(u)

∣∣∣∣ sup
u∈Ii1,...,in

∣∣∣∣ 1

(Tn−1)′(Tu)

∣∣∣∣
6 κ

Λl+1−1

Λn
= κ

Λl

Λn

where the third line follows by the chain rule.

Finally, we obtain a property which is commonly known as a bounded distor-

tion property. This allows us to replace the diameter of a cylinder Ii1,...,in with the

reciprocal of the derivative of the nth power of T at any point which has symbolic

expansion beginning with the word i1, . . . , in (subject to some uniformly bounded

error). The following derivation of the bounded distortion property from the Rényi

condition is a classical result, a version of which can be found for instance in Lemma

2 of [CFS, Chapter 7.4].

Proposition 3.1.4 (Bounded distortion). For any n > 1 and cylinder Ii1,...,in with

x, y ∈ Ii1,...,in we have

exp

(
−κΛl

Λ− 1

)
6

(Tn)′(x)

(Tn)′(y)
6 exp

(
κΛl

Λ− 1

)
. (3.7)

Also,

exp

(
−κΛl

Λ− 1

)
6
|Ii1,...,in |
|(Tn)′(x)|−1

6 exp

(
κΛl

Λ− 1

)
. (3.8)
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Proof. We begin by proving (3.7). Fix some n > 1, some cylinder Ii1,...,in and

x, y ∈ Ii1,...,in . Then by the chain rule and Proposition 3.1.3,

(Tn)′(x)

(Tn)′(y)
= exp

(
log |(Tn)′(x)| − log |(Tn)′(y)|

)
= exp

(
n−1∑
k=0

log |T ′(T kx)| −
n−1∑
k=0

log |T ′(T ky)|

)

6 exp

(
κΛl

n∑
k=1

1

Λk

)

6 exp

(
κΛl

Λ− 1

)
and since x and y were chosen arbitrarily the lower bound in (3.7) also follows from

this. Then to see (3.8), fix some y ∈ Ii1,...,in and observe that

exp

(
−κ

1− Λ

)
|Ii1,...,in | 6

∫
Ii1,...,in

(Tn)′(x)

(Tn)′(y)
dx 6 exp

(
κΛl

Λ− 1

)
|Ii1,...,in |.

It follows that

exp

(
−κ

1− Λ

)
|Ii1,...,in ||(Tn)′(y)| 6 1 =

∫
Ii1,...,in

|(Tn)′(x)|dx

6 exp

(
κΛl

Λ− 1

)
|Ii1,...,in ||(Tn)′(y)|

from which (3.8) follows.

3.2 Previous work

We now outline some relevant prior results, including the work of Walters [W] and

Kifer, Peres and Weiss [KPW], which are important to the story of the dimension

gap problem.

We observe that by the Kolmogorov-Sinai theorem, the measure-theoretic en-

tropy h(µp) has the simple form h(µp) = −
∑∞

n=1 pn log pn. We define the Lyapunov

exponent of an ergodic measure µ (with respect to the map T ) by

χ(µ) =

∫
log |T ′|dµ

which measures the amount of expansion (or contraction) in the system from the

point of view of the measure µ.
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In 1966 Kinney and Pitcher [KP2] first proved that the dimension of any

projected Bernoulli measure for the Gauss map was given by the formula

dimµp =
−
∑∞

n=1 pn log pn
−
∫

2 log xdµp(x)
(3.9)

provided that the entropy h(µp) = −
∑∞

n=1 pn log pn < ∞. Notice that is not clear

from (3.9) whether or not dimµp is less than 1. (3.9) is now known to be a specific

example of the more general result which says that for an ergodic invariant measure

with finite entropy we have the following closed-form formula for the dimension,

which links the dimension of the measure with the entropy and Lyapunov exponent

of the measure (see for instance Theorem 4.4.2 in [MU1]).

Proposition 3.2.1 (Volume Lemma). If µ is an ergodic T -invariant probability

measure on [0, 1] and h(µ) <∞ then the Hausdorff dimension of µ is given by

dimµ =
h(µ)

χ(µ)
.

It is also a classical result that the dimension of the repeller J is encoded

as the zero of the pressure. This result in our setting was proved by Mauldin and

Urbański, see for instance Theorem 3.15 in [MU3].

Proposition 3.2.2 (Bowen-Manning-McCluskey formula). Let J be the repeller of

T . Then λ = dim J satisifes P (−λ log |T ′|) = 0.

In 1978, Walters [W] developed the thermodynamic formalism of countable

branch expanding maps, where he proved a generalised Ruelle-Perron-Frobenius

theorem for countable branch maps and potentials with sufficient regularity. He used

this to prove the existence of a unique Gibbs state µT for the potential − log |T ′|.
Moreoever he proved that µT satisfied a variational principle and was the unique

equilibrium state for − log |T ′|, that is, the unique absolutely continuous measure

for the system. This means that for all invariant probability measures µ 6= µT with∫
log |T ′|dµ <∞,

h(µ)−
∫

log |T ′|dµ < h(µT )−
∫

log |T ′|dµT = P (− log |T ′|) = 0

where the last equality follows by Proposition 3.2.2. Notice that this implies that

for any invariant measure µ for which
∫

log |T ′|dµ <∞, then

dimµ =
h(µ)

χ(µ)
6 1
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with equality if and only if µT = µ. Therefore if µT 6= µp for any p ∈ P, then pro-

vided h(µp) < ∞, Walters’ work implies that dimµp < 1. No further quantitative

information about the size of dimµp can be obtained via this approach.

The next major breakthrough was in 2001, when Kifer, Peres and Weiss

[KPW] showed that under some additional assumptions on the map T , supp∈P dimµp <

1 − ψ for some constant ψ that could be made explicit. In particular, under the

assumptions that

1. there exists some s < 1 for which∑
n∈N
|In|s <∞,

2. the absolutely continuous measure µT is not a Bernoulli measure,

they proved that there existed a dimension gap, that is, supp∈P dimµp < 1− ψ for

some constant ψ > 0. Importantly, their formula held even when µp had infinite

entropy.

In particular, they applied their results to the Gauss map, and obtained that

sup
p∈P

dimµp < 1− 10−7.

They also gave a characterisation of when one is in the setting that µT is not

Bernoulli: they showed that µT is Bernoulli if and only if

F ◦ T ◦ F−1 is linear (3.10)

where F is the diffeomorphism F (t) = µ([0, t]).

Their proof was separated into two cases, dependent on whether the entropy

of the measure was finite or infinite. The infinite entropy case was tackled by looking

at ‘short expansion intervals’ and the finite entropy case was tackled by looking at

sets of large deviations for the frequency of certain digits from the one provided by

µT . We will provide the proof for infinite entropy measures in section 3.4, and for

now we describe their proof for the case where the entropy is finite.

The proof for the finite entropy case follows from looking at the dimension

of sets of points whose symbolic coding sees a frequency of a certain digit appearing

which differs from the one corresponding to the absolutely continuous measure µT .

Their approach is as follows. Suppose that µT is not Bernoulli and let µp be some
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Bernoulli measure. For a finite word w ∈ Σ∗ and δ > 0, fix

Γδw =

{
x ∈ (0, 1) : lim sup

n→∞

∣∣∣∣∣ 1n
n−1∑
i=0

1w(T ix)− µT (Iw)

∣∣∣∣∣ > δ

}
.

Observe that if w ∈ Σ∗ is some word for which

|µp(Iw)− µT (Iw)| > δ

then by the Birkhoff Ergodic Theorem, µp(Γδw) = 1 and so dimµp 6 dim Γδw.

Since µT is not Bernoulli, there exists some word a ∈ Σ∗ for which µT (Iaa) 6=
(µT (Ia))2. Let

δT =
|µT (Iaa)− (µT (Ia))2|

3
> 0.

Fix p and put δ = |µp(Ia)− µT (Ia)|. Then it follows that

|µT (Iaa)− (µp(Ia))2| > |µT (Iaa)− (µT (Ia))2| − |(µT (Ia))2 − (µp(Ia))2|

= |µT (Iaa)− (µT (Ia))2| − |µT (Ia)− µp(Ia)||µT (Ia) + µp(Ia)|

> 3δT − 2δ.

Therefore, if δ < δT , dimµp 6 dim ΓδTaa and if δ > δT , dimµp 6 dim Γδa 6 dim ΓδTa .

Therefore

sup
p∈P

dimµp 6 max{dim ΓδTaa,dim ΓδTa }. (3.11)

Kifer, Peres and Weiss then proved that for any δ > 0

sup
w

dim Γδw < 1

which in light of (3.11) implies the existence of a dimension gap.

In [KPW] the authors also present analogous results for k-step Markov mea-

sures. More recently, Rapaport [Rap] extended the work of [KPW] to the non-

stationary case, to show that there is a uniform dimension gap for all measures with

respect to which the digits of the f -expansion are independent but not necessarily

i.i.d. Notice that these measures will no longer be invariant.
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3.3 Main result

In this section we present and discuss the statement of our main result of this

chapter; a theorem about the existence of a dimension gap under some different

assumptions to the analogous theorem in [KPW].

Before we state the result, we introduce some additional notation: for a finite

word w ∈ Σ∗ we denote the periodic point in Σ obtained by repeating the finite

word w by (w)∞ (note that since Σ is the full shift space this is well defined for any

w ∈ Σ∗). We denote the projection of this periodic point (which is periodic for T )

by zw = Π((w)∞).

For simplicity, in what follows we’ll assume that if T ′ > 0 then I1 = (0, a)

for some a < 1 and if T ′ < 0 then I1 = (b, 1) for some b > 0.

Theorem 3.3.1. Let T :
⋃
n∈N In → [0, 1] be an Expanding-Markov-Rényi map

such that

(1) Non-linearity condition.

T ′(z1)T ′(z2) 6= T ′(z12)T ′(z21). (3.12)

(2) Polynomial decay of interval lengths. For some s < 1,∑
n∈N
|In|s <∞.

(3) Technical assumptions on derivatives. The derivative T ′ is monotone.

Additionally: (a) if T is an increasing map (T ′ > 0) then |T ′(z1)| > 1 (b) if T

is a decreasing map (T ′ < 0) then for all n ∈ N, (T 2)′|In must be monotone.

Then

sup
p∈P

dimµp 6 1− ψ

for some ψ > 0.

Remark 3.3.2. In principle, ψ can be estimated in terms of Λ, κ, s and θ where

θ =

∣∣∣∣log
T ′(z1)T ′(z2)

T ′(z12)T ′(z21)

∣∣∣∣ 6= 0.

However, unfortunately for the Gauss map this yields a very poor estimate for the

gap compared to the one obtained by Kifer, Peres and Weiss. Essentially this is due

to the fact that κ appears in several exponents in our estimate combined with the
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fact that κ = 16 for the Gauss map. See Remark 4.6.4. For this reason, we choose

not to include an explicit estimate of ψ.

We now discuss the three conditions that we impose on our maps. First

of all, the definitive ingredient which forces the dimension gap is the non-linearity

condition. Clearly, if T was linear, the derivatives T ′(z1) = T ′(z12) and T ′(z2) =

T ′(z21), and thus we’d have equality in (3.12). However, this condition should hold

for a generic non-linear map and as such, θ can be thought of as a constant that

measures the amount of non-linearity in the system.

The second condition is satisfied when the diameters of the intervals |In| are

decaying polynomially. For instance, in the case of the Gauss map, it would suffice

to take any constant s > 1
2 . The assumption that

∑
|In|s <∞ for some 0 < s < 1

isn’t usually equivalent to polynomial decay for the |In|. (For instance, consider the

example where |In| = c
n2 whenever n is not a power of 2, and |In| = c

(logn)2 whenever

n is a power of 2, where c is a normalising constant. Clearly |In|s is summable but

not polynomially decaying for any s > 1
2). However, in our setting it turns out that

these two assumptions are actually equivalent, since the monotonicity of T ′ forces

{|In|}n∈N to be a decreasing sequence. In fact, if we define

s0 := inf

{
s :

∞∑
n=1

|In|s <∞

}
(3.13)

and

t0 := inf

{
t : |In| 6

C

n
1
t

for some uniform constant C

}
(3.14)

then s0 = t0. We provide a quick proof of this fact.

Lemma 3.3.3. Let T be an EMR map that satisfies assumptions (1)-(3) and let s0,

t0 be defined as in (3.13) and (3.14). Then s0 = t0.

Proof. The first direction s0 6 t0 is obvious. To see that s0 > t0, let s > s0 so

that
∑∞

n=1 |In|s < ∞. So there exists a subsequence nk for which |Ink |s 6 1
nk

(if there were only finitely many such intervals it would contradict convergence of

the sum). Let {nk}k∈N be exhaustive, in the sense that for any n /∈ {nk}k∈N,

|In|s > 1
n . We’ll show that nk is dense in the natural numbers, that is, we’ll show

that lim supk→∞
nk+1

nk
= 1. The desired result will then follow since for sufficiently

large k we’ll have
nk+1

nk
6 2 and so for any nk 6 n 6 nk+1

|In|s 6
1

nk
=

1

nk+1
· nk+1

nk
6

2

n
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that is, |In| 6 C

n
1
s

for some uniform constant C.

Suppose for a contradiction that instead lim supk→∞
nk+1

nk
= c > 1. Let ε > 0

such that 1
c + ε < 1. Then there exists a subsequence nkl such that 1

nkl
< ε

2 for all

l and
nkl
nkl+1

6 1
c + ε

2 . Moreover, for all nkl 6 n < nkl+1, |In|s > 1
nkl+1

and so

∞∑
n=1

|In|s >
∞∑
l=1

nkl+1−1∑
n=nkl

1

nkl+1
=

∞∑
l=1

nkl+1 − 1− nkl
nkl+1

>
∞∑
l=1

1− 1

nkl+1
− nkl
nkl+1

>
∞∑
l=1

1− cε =∞

which contradicts the assumption that s > s0. Thus the result follows.

We also remark that (2) is equivalent to imposing the condition that

sup
x∈[0,1]

∑
n∈N

1

|T ′(T−1
n (x))|s

<∞ (3.15)

by the bounded distortion property (Proposition 3.1.4). Therefore (3.15) and con-

dition (2) on the map will be used interchangeably.

Finally, we remark that (2) is a sharp condition. This boils down to the fact

that if the interval lengths |In| were decaying too slowly, we could build a Bernoulli

measure by distributing all the mass on the cylinders indexed by higher digits which

are witnessing a slow decay, where the mass would be distributed proportional to the

length of each cylinder. Since the branches of T which are indexed by higher digits

appear increasingly linear, this results in a projected measure with high dimension.

We make this precise in the following result. This result was pointed out to the

author via personal communication with Thomas Jordan.

Lemma 3.3.4. Suppose there does not exist s < 1 for which∑
n∈N
|In|s <∞.

Then for any t < 1 there exists a probability vector p for which dimµp > t.

Proof. Let t < 1, then by assumption

∞∑
n=1

|In|t =∞.
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Thus, we can choose some large N for which

k∑
n=N

|In|t > 1

for some k > N . Fix pN = (p1, p2, . . .) where

pn =

{
0 n < N or n > k

c|In|t N 6 pn 6 k

where c is a normalising constant so that
∑k

n=N c|pn|t = 1. Consider the Bernoulli

measure µpN . By Proposition 3.2.1, since h(µpN ) <∞ it follows that the dimension

dimµpN =
h(µpN )

χ(µpN ) . By Proposition 3.1.4, log |T ′(x)| 6 − log |In| + κΛl

1−Λ for x ∈ In.

Therefore

dimµpN >
−
∑k

n=N c|In|t log c|In|t

−
∑k

n=N c|In|t(log |In| − κΛl

1−Λ)

=
−t
∑k

n=N (c|In|t log |In|)− log c

−
∑k

n=N (c|In|t log |In|) + κΛl

1−Λ

.

Since N can be chosen arbitrarily large so that −
∑k

n=N (c|In|t log |In|) is

arbitrarily large, we deduce that dimµpN → t as N →∞, and so we are done.

Now we move on to the third assumption which we make on the map T

in Theorem 3.3.1. None of the conditions within this assumption are necessary

for the main portion of our proof; indeed we obtain a uniform upper bound for the

dimension of all Bernoulli measures for p for which p1 and p2 are uniformly bounded

from below away from 0 without using any of the assumptions in (3). However, in

order to extend the results to the whole simplex P we need to observe how entropy

and Lyapunov exponents change when shifting small amounts of mass in a given

Bernoulli measure. When T is an increasing map, we understand how the Lyapunov

exponents behave under the technical assumption that T ′ is monotone, and when

T is a decreasing map we understand how they behave under the assumption that

both T ′ and (T 2)′|In are monotone (∀n ∈ N). For this reason, it makes it necessary

to impose these conditions on the map, since without them we are unable to use our

current tools to understand how Lyapunov exponents change under redistribution

of mass. The technical assumption that |T ′(z1)| > 1 whenever T is increasing is

necessary in order to estimate dimµp for probability vectors p where p1 is close to 1.
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Essentially, this is down to the fact that this forces the Lyapunov exponent of such a

measure to be bounded away from 0. An analogous condition is not required when T

is decreasing since in this case it is immediate that |T ′(z1)| > 1 due to the geometry

of the map. In light of the above, it seems as though the technical assumptions on

derivatives in (3) of Theorem 3.3.1 should not be necessary in general, but are just

a byproduct of the tools (which appear in Chapter 5) that are used.

We now compare our result to the analogous result of Kifer, Peres and Weiss

in [KPW]. In their result, they require the absolutely continuous measure to not

be a projected Bernoulli measure. By Proposition 2.5.8, µT is not Bernoulli if and

only if − log |T ′| is not cohomologous to a Bernoulli potential fp =
∑∞

n=1 log pn1In .

Furthermore, by properties of cohomologous functions, this implies that if µT were

Bernoulli, the Birkhoff sums of − log |T ′| should coincide with the Birkhoff sums of

fp (for some probability vector p) on all periodic orbits. Therefore, in order to verify

that one is in the setting where results from [KPW] can be applied, it is enough to

check that for any p ∈ P, there exists a periodic point x of period n such that

−Sn log |T ′(x)| 6= Sn log fp(x) (3.16)

which can now be verified purely by studying derivatives of the map at various

points in the orbit of a periodic point.

Therefore, our assumptions are stronger than the assumptions in [KPW].

This is because our non-linearity condition (that |T ′(z1)T ′(z2)| 6= |T ′(z12)T ′(z21)|)
implies that for all p there is a choice of x ∈ {z1, z2, z12} for which (3.16) holds, or

in other words, we see some non-linearity in the first two branches of the map T .

In contrast, a map where the first two branches were linear (but there was some

non-linearity amongst the later branches of the map) would fail our condition but

typically satisfy the condition from [KPW]. The reason why we have to impose this

stronger condition is again a byproduct of the tools used in Chapter 5.

Another aspect in which Theorem 3.3.1 and the analogous result in [KPW]

differ is that in order to use the result in [KPW] to obtain quantitative information

about the size of the dimension gap, one needs to know what the absolutely continu-

ous measure µT is, since the gap depends explicitly on how much mass µT attributes

to certain cylinders. In light of this, one minor benefit of our result is that the es-

timate for the dimension gap can be quantified purely in terms of the derivative of

the map at certain points, and thus no information about the absolutely continuous

measure µT is required.
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3.4 The infinite entropy case

In this section we obtain an upper bound for the dimension of Bernoulli measures

with infinite entropy, where we cannot use the formula in Proposition 3.2.1 to calcu-

late the dimension. We begin with a modification of Theorem 4.1 in [KPW] which

provides an upper bound on the dimension of the set of points which belong to in-

finitely many cylinders whose diameters are contracting faster than some rate λ. In

particular, define Jn(x) = Ii1...in if x ∈ Ii1...in , that is, Jn(x) is the ‘level n’ cylinder

that x belongs to, and define

Eλ =

∞⋂
j=1

∞⋃
n=j

{x ∈ (0, 1) : |Jn(x)| 6 exp(−λn)} (3.17)

to be the set of all x whose cylinders shrink faster than exp(−λ) infinitely often. We

begin by getting an upper bound on the dimension of Eλ, which is closely related

to the dimension of any measure with Lyapunov exponent greater than λ. This will

then allow us to bound the dimension of any measure which has infinite Lyapunov

exponent. As a consequence we will also be able to bound the dimension of any

measure that has infinite entropy.

Denote

q = log

(
sup

x∈(0,1)

∑
n∈N

1

|T ′(T−1
n x)|s

)
<∞ (3.18)

where s is given by (2) of Theorem 3.3.1. In Section 4.4 we’ll use the upper bound

that this induces: ∑
n∈N

1

|T ′(T−1
n x)|s

6 eq (3.19)

for all x ∈ [0, 1].

The next result provides a bound which is sufficient for our purposes, al-

though it is a rougher bound than the one given in Theorem 4.1 in [KPW]. However,

this modification allows us to significantly simplify the proof.

Lemma 3.4.1. Let λ > 0 and Eλ be defined as in (3.17). Then

dim Eλ 6 s+
q

λ
(3.20)

where q was defined in (3.18).

Proof. The idea behind the proof is straightforward: we choose the natural cover
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for Eλ and show that the sum of the uth powers of the diameters of sets in this cover

is finite, for any u > s+ q
λ .

In particular, define

Sn = {Ij : j ∈ Nn such that |Ij| 6 e−λn}.

So Sn consists of all cylinders which are seeing the ‘right decay rate’ at time n.

Notice that
⋃∞
n=m Sn is a cover of Eλ for any m ∈ N.

For any s < u < 1,

∑
I∈Sn

|I|u 6 e−λn(u−s)
∑
I∈Sn

|I|s 6 e−λn(u−s)
∫ 1

0
|Jn(x)|s−1dx (3.21)

6 C1−se−λn(u−s)
∫ 1

0
|(Tn)′(x)|1−sdx (3.22)

where the last inequality follows by Proposition 3.1.4 and C = exp
(
κΛl

Λ−1

)
as in

(3.1.4).

Next we estimate the integral
∫ 1

0 |(T
n)′|1−sdx. By applying the chain rule

and a change of variables,

∫ 1

0
|(Tn)′(x)|1−sdx =

∫ 1

0

 ∑
x∈T−1y

|T ′(x)|−s
 |(Tn−1)′(y)|1−sdy

6 eq
∫ 1

0
|(Tn−1)′(y)|1−sdy

where the second step follows by (3.19). Therefore by induction,∫ 1

0
|(Tn)′(x)|1−sdx 6 eqn. (3.23)

By combining (3.22) and (3.23) we obtain∑
I∈Sn

|I|u 6 C1−sen(q−λ(u−s)). (3.24)

Now, to see (3.20), first suppose that there exists some s < u < 1 for which

λ(u− s) > q. Since this makes (3.24) summable in n and since
⋃∞
n=m Sn is a cover

for Eλ, it follows that dim Eλ 6 u. In particular, setting u0 to be the solution to

λ(u0 − s) = q, we have dim Eλ 6 u0 = s+ q
λ .

On the other hand, if λ(u−s) 6 q for all s < u < 1, it follows that λ(1−s) 6 q
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and therefore s+ q
λ > 1 and so trivially dim Eλ 6 s+ q

λ .

Since any ergodic measure will see a specific rate of decay on a set of full

measure, the above result allows us to get a good upper estimate on the dimension

of any measure which has a large Lyapunov exponent. In particular, we can use this

result to guarantee that any measure with infinite entropy (and therefore infinite

Lyapunov exponent) will have dimension at most s.

Lemma 3.4.2. Let µp be a Bernoulli measure such that h(µp) =∞. Then

dimµp 6 s.

Proof. We’ll begin by showing that if h(µp) =∞ then χ(µp) =∞. By Proposition

3.1.4,

χ(µp) =

∫
log |T ′|dµ >

∞∑
n=1

µp(In) log
1

|In|
− C (3.25)

for some constant C > 0. For any N ∈ N we have

−
N∑
n=1

µp(In) logµp(In) +

N∑
n=1

µp(In) log |In| =
N∑
n=1

µp(In) log
|In|

µp(In)

=
N∑
n=1

µp(In) ·
N∑
n=1

µp(In)∑N
n=1 µp(In)

log
|In|

µp(In)

6
N∑
n=1

µp(In) · log
( N∑
n=1

|In|∑N
n=1 µp(In)

)
.

In the final step we used Jensen’s inequality and the fact that log is a concave

function. Since
∑∞

n=1 |In| = 1 the upper bound converges to 0 as N → ∞ . It

follows that if −
∑∞

n=1 µp(In) logµp(In) = ∞ then −
∑∞

n=1 µp(In) log |In| = ∞.

By (3.25) this implies that if h(µp) = ∞ then χ(µp) = ∞. Thus for µp almost

every x,

lim inf
n→∞

1

n

n−1∑
k=0

log |T ′(T k(x))| =∞.

Fix arbitrary λ > 0. Then for µp almost every x

1

n

n−1∑
k=0

log |T ′(T k(x))| > 2λ (3.26)
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for all n sufficiently large. By rearranging (3.26) we obtain that for all x that satisfy

(3.26), there exists a subsequence nk such that

|(Tnk)′(x)|−1 < exp(−2λnk)

for all k ∈ N. By Lemma 3.1.4 this implies that

|Jnk(x)| 6 exp

(
κΛl

1− Λ

)
|(Tnk)′(x)|−1 6 exp

(
κΛl

1− Λ

)
exp(−2λnk) 6 exp(−λnk)

along the subsequence nk. Therefore x ∈ Eλ.

By Lemma 3.4.1 we know that dim Eλ 6 s+ q
λ . Since µp(Eλ) = 1 for all λ it

follows that dimµp 6 s + q
λ where q is given by (3.18), and since λ was chosen to

be arbitrarily large, the result follows.

3.5 Structure of proof of Theorem 3.3.1

Since we saw in Lemma 3.4.2 that the dimension of infinite entropy Bernoulli mea-

sures is bounded above by s, we can now restrict our attention to finite entropy

Bernoulli measures. Our proof of Theorem 3.3.1 is split into two parts. Firstly, in

Chapter 4, we use a thermodynamic formalism approach to study the dimension of

Bernoulli measures µp where p satisfies some conditions on its weights pn. Given

a probability vector which satisfies these conditions, we can obtain the dimension

of the corresponding Bernoulli measure as the derivative of an associated function

βp. The problem then reduces to obtaining a ‘global bound’ on the convexity of βp,

that is, a uniform lower bound on the second derivative of βp. This approach was

proposed by Kesseböhmer, Stratmann and Urbański and outlined in a talk given by

Kesseböhmer in [Ke].

In Chapter 5 we consider Bernoulli measures µp where p does not satisfy the

conditions on the weights pn which were required for the above approach. By ‘re-

distributing mass’ within such a Bernoulli measure µp, we can obtain an associated

Bernoulli measure µp∗ which does satisfy the conditions. The problem then reduces

to estimating the change in the entropy and Lyapunov exponent, in order to obtain

an upper bound on dimµp in terms of dimµp∗ .

In order to make this precise, we need to introduce some notation pertaining

to various subsets of the simplex P.

Definition 3.5.1. Define P0 to be the set of all probability vectors p = (p1, p2, . . .)

for which
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(a) dimµp > 2s+2
s+3 .

(b) p has all strictly positive entries, possibly apart from a tail of zeroes. That is,

pn 6= 0 unless pk = 0 for all k > n.

(c) pn
|In| is bounded in n.

Chapter 4 will be dedicated to studying the dimension of µp for p ∈ P0.

Apart from (b), which is just a condition which makes the exposition of our ar-

guments neater, the other conditions in Definition 3.5.1 are necessary in order to

use the aforementioned thermodynamic formalism approach that we will employ in

Chapter 4. In particular, conditions (a) and (c) will guarantee analyticity of βp

which is associated to the probability vector p. Notice that (c) implies that the

entries pn decay polynomially at a rate that matches the polynomial decay rate of

the intervals |In|. Also, notice that by Lemma 3.4.2, for any p ∈ P0, the entropy

h(µp) <∞, since for 0 < s < 1 we have s < 2s+2
s+3 . Therefore, by Proposition 3.2.1,

for any p ∈ P0, the dimension dimµp =
h(µp)
χ(µp) . The importance of condition (a) is

explained in Remark 4.1.4.

It will turn out that restricting to p ∈ P0 will still not be enough to get a

uniform upper bound for supp∈P0
dimµp using only the thermodynamic formalism

approach. In particular, we will only be able to get uniform upper bounds for

dimµp if we restrict to a subset of P0 where the entries p1 and p2 are uniformly

bounded away from 0, that is, µp gives some uniform amount of mass to the first

two cylinders. The relevant notation is introduced in the following definition.

Definition 3.5.2. (i) Define P∗ ⊂ P0 to be the set of probability vectors with

non-zero entries, that is, all p = (p1, p2, . . .) for which pn > 0 for all n.

(ii) Define Pn ⊂ P to be all p = (p1, p2, . . .) for which pk > 0 for all k 6 n and

pk = 0 for all k > n, which correspond to Bernoulli measures which are fully

supported on the first n cylinders. Let P∞ =
⋃
n∈N Pn.

(iii) Define Pε to be all p ∈ P0 for which p1, p2 > ε and P∗ε = P∗ ∩ Pε.

(iv) For n > 2 define Pnε = Pε ∩ Pn. Finally, define

P∞ε =

∞⋃
n=2

Pnε

and notice that Pε = P∗ε ∪ P∞ε .
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Therefore the key piece of notation above is Pε which denotes all p ∈ P0 for

which p1, p2 > ε. The other notation just describes how Pε is divided into the set P∗ε
of probability vectors which have all non-zero entries and the set P∞ε of probability

vectors which end in a tail of zeroes. Notice that

P0 =
⋃
ε>0

Pε. (3.27)

As we alluded to earlier, we can only get a uniform upper bound for dimµp for

p ∈ Pε, whenever ε is fixed. This estimate will be dependent on ε, and approaches

1 as ε→ 0. Therefore, we are forced to calculate supp∈Pε dimµp for different values

of ε > 0 and postpone a uniform result for supp∈P0
dimµp till a later chapter.

In fact, our estimates for supp∈Pε dimµp will also depend on another pa-

rameter δ > 0. This parameter emerges via the flexibility in the thermodynamic

formalism approach; for the precise meaning of this parameter see Remark 4.1.5.

For each δ > 0 sufficiently small, we will be able to obtain a distinct upper bound

for supp∈Pε dimµp. The main result of Chapter 4 is the following theorem.

Theorem 3.5.3. For all δ < 1−s
4 (where δ is defined in Remark 4.1.5) and ε

sufficiently small there exists a ‘gap constant’ Gε,δ > 0 for which

sup
p∈Pε

dimµp < 1−Gε,δ.

By using the same tools as Chapter 4, we can also get an independent bound

for the dimension of any measure µp where p ∈ P0 and its first entry p1 is ‘close

to 1’. In particular, p1 will assumed to be p1 > ξ, where ξ ∈ (0, 1) is some fixed

constant which is given explicitly in (B.1). Crucially, this estimate gives an upper

bound on the dimension of a measure µp for p ∈ P0 with no further restrictions on

the size of p2. We obtain the following result.

Lemma 3.5.4. There exist constants 0 < φ < 1 and 0 < ξ < 1 such that for all

p ∈ P0 with p1 > ξ, we have the bound

dimµp < 1− φ.

The proof of this lemma is a condensed and considerably more straightfor-

ward version of the arguments presented in Chapter 4, owing to the fact that in

Chapter 4, at each step in the proof of Theorem 3.5.3 uniform estimates have to
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be obtained which hold for all p in the more general class Pε. For this reason, we

prove Lemma 3.5.4 separately in Appendix B, where we also give an explicit value

for ξ. This appendix should only be read after finishing Chapter 4.

Theorem 3.5.3 and Lemma 3.5.4 and their thermodynamic formalism proofs

give us some partial estimates on dimµp for p ∈ P0, but in Chapter 5 we turn

to using a ‘mass resdistribution’ approach to tackle estimates on supp∈P\P0
dimµp

and to obtain a uniform upper bound for supp∈P0:p1<ξ dimµp. First, we will prove

the following result which means that in order to prove a dimension gap which is

uniform over the whole simplex P, it suffices to restrict our attention to P0 \Pε, for

some ε > 0.

Theorem 3.5.5.

sup
p∈P\P0

dimµp 6 sup
p∈P0

dimµp.

Therefore, it remains to figure out how we can convert a uniform upper

bound for supp∈Pε dimµp into a uniform upper bound for supp∈P0:p1<ξ dimµp. This

is precisely where it comes in useful that we have upper bounds supp∈Pε dimµp <

1−Gε,δ for various values of the parameter δ > 0 in Theorem 3.5.3. In particular,

by using the ‘mass redistribution technique’, we will show that there exists some

δ > 0 and ε > 0, such that for any p ∈ P0 \ Pε where p1 < ξ, there exists p∗ ∈ Pε
with dimµp 6 dimµp∗ + E(ε) and moreover, E(ε) < 1

2Gε,δ. This is proved in the

following theorem in Chapter 5.

Theorem 3.5.6. There exists δ < 1−s
4 and some ε > 0 such that

sup
p∈P0\Pε:p1<ξ

dimµp < 1− 1

2
Gε,δ.

Clearly, Theorem 3.3.1 follows from Lemmas 3.4.2, 3.5.4 and the Theorems

3.5.3, 3.5.5 and 3.5.6.
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Chapter 4

Estimating the variance

The main goal of this chapter is to prove Theorem 3.5.3, that is, to prove that for

all ε sufficiently small and all δ < 1−s
4 , there exists some constant Gε,δ > 0 for which

sup
p∈Pε

dimµp < 1−Gε,δ.

As the notation suggests, for each ε > 0 we get a range of different upper

bounds for supp∈Pε dimµp, each of which depend on the initial choice of δ. One

might wonder why we do not just present the best value of Gε,δ, that is, the one that

yields the least upper bound for supp∈Pε dimµp. The reasoning behind this is that

in Chapter 5 we will work on approximating supp∈P0\Pε dimµp in terms of 1−Gε,δ
and some term Eε, which crucially will only depend on ε. In order to demonstrate

the existence of a dimension gap, we need to ensure that 1 − Gε,δ + Eε < 1, and

thus we need to have the flexibility to choose a suitable candidate for δ and ε which

will guarantee this.

Recall that
⋃
ε>0 Pε = P0 and therefore throughout this chapter we will only

consider p ∈ P0. Initially, many results will be stated which hold uniformly for all

p ∈ P0, although later on in the chapter several results will be dependent on ε.

Consider a measure µp for p ∈ P0. In order to study the dimension of µp, in

Section 4.1 we will reformulate the problem as a question concerning the analytic

properties of a particular function βp. We will then see that the problem reduces

to finding a lower bound for the variance of some potentials. In Section 4.2 we will

rewrite the variance as an integral, which will provide us with a geometric framework

within which we can develop a strategy to make estimates on the variance. At that

point we will be ready to outline the structure of the remainder of the chapter, which

will be split into proving various properties of the function and measure which are
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involved in the integral. These combined together will produce the desired lower

bound.

4.1 Relating the problem to the study of the analytic

properties of βp

In this section we reformulate the problem of finding an upper bound for the di-

mension of µp for p ∈ P0 into the problem of finding a lower bound for the second

derivative of some function βp. Before we define βp, we introduce some notation.

For p ∈ P0, let Np = {n ∈ N : pn 6= 0}. By definition of P0, either Np = N
or Np = {1, . . . , N} for some N ∈ N. Let Tp denote the map consisting only of

branches Tn for which n ∈ Np. This means that the map Tp will either be the map

T or an approximation T(N) of T for some N ∈ N, which defines a dynamical system

on its corresponding repeller Jp = JN , where these objects are defined as follows.

We define the Nth approximation T(N) of T to be the map made up of the first N

branches T1, . . . , TN . Similarly to (3.1) and (3.2), T(N) can be coded by the full shift

on N symbols (ΣN , σ) and its repeller is defined as

JN = [0, 1] \
∞⋃
n=0

T−n

({
0 ∪ IN+1

∞⋃
n=N+2

In

})

where Π : ΣN → [0, 1] given by

Π(i) = lim
n→∞

T−1
i1
◦ · · · ◦ T−1

in
([0, 1])

sets up a correspondence between ΣN and JN .

For p ∈ P0 define the Bernoulli potential fp : Jp → (−∞, 0] by

fp =
∑
n∈Np

log pn1In .

Notice that fp is the Gibbs potential for the Bernoulli measure µp. We are

now ready to introduce the function βp.

Definition 4.1.1. Fix a probability vector p = (p1, p2, . . .) ∈ P0. We can define the

function βp : [0, 1]→ [0, 1] where βp(t) is defined implicitly as the solution to

P (−βp(t) log |T ′|+ tfp, Tp) = 0 (4.1)

where P (·, Tp) denotes the usual pressure function for the map Tp.
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Note that it is not immediately obvious that βp should be well-defined; this

fact will follow from Proposition 4.1.2.

We denote the function that appears inside the pressure in the definition of

βp as gp,t : Jp → R

gp,t = −βp(t) log |T ′|+ tfp. (4.2)

Since by definition P (gp,t) = 0 < ∞, by Proposition 2.5.7 we know that there

exists a unique Gibbs measure for gp,t which we will denote by µp,t. Clearly µp,t is

supported on Jp.

The function βp will be the object of our focus throughout this section. In

the following proposition we summarise its important properties. Recall that s was

fixed in Theorem 3.3.1 to be some constant 0 < s < 1 for which
∑

n∈N |In|s <∞.

Proposition 4.1.2. Let p ∈ P0. The function βp : [0, 1] → [0, 1] satisfies the

following properties:

1. βp(t) is convex and decreasing on [0, 1].

2. βp(t) is analytic for t in (a) a neighbourhood of 1 and (b) for t ∈ (0, tp) where

tp = inf{t : βp(t) > s}. Moreover for these values of t the first derivative of

βp (with respect to t) is given by

β′p(t) =
−
∫
fpdµp,t∫

log |T ′|dµp,t
(4.3)

and the second derivative is given by

β′′p(t) =
σ2
µp,t(−β

′
p(t) log |T ′|+ fp)∫

log |T ′|dµp,t
(4.4)

where the variance is associated to Tp.

3. 0 < βp(0) 6 1 and βp(1) = 0.

Moreover, these properties determine the graph of βp(t); see Figure 4.1.

Proof. For the first part, observe that

P (−βp(t) log |T ′|+ tfp) = lim
n→∞

 ∑
i1,...in∈Nnp

(pi1 . . . pin)t

|(Tn)′(Π((i1 . . . in)∞))|βp(t)

 .

For each n, as t increases the numerator of each term in the corresponding sum

increases. Therefore by passing to the limit we see that as t increases, βp(t) must
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decrease accordingly to ensure that P (−βp(t) log |T ′| + tfp) = 0 for all t. To see

that βp is convex, notice that for any n ∈ N, and a, u, t ∈ (0, 1)

∑
i1,...,in∈Nnp

pati1 . . . p
at
in

|(Tn)′(Π((i1 . . . in)∞))|aβp(t)

p
(1−a)u
i1

. . . p
(1−a)u
in

|(Tn)′(Π((i1 . . . in)∞))|(1−a)βp(u)
6

 ∑
i1,...,in∈Nnp

pti1 . . . p
t
in

|(Tn)′(Π((i1 . . . in)∞))|βp(t)

a ∑
i1,...,in∈Nnp

pui1 . . . p
u
in

|(Tn)′(Π((i1 . . . in)∞))|βp(u)

1−a

by Hölder’s inequality. Therefore

P (−(aβp(t) + (1− a)βp(u)) log |T ′|+ (at+ (1− a)u)fp)

6 aP (−βp(t) log |T ′|+ tfp) + (1− a)P (−βp(u) log |T ′|+ ufp) = 0.

Therefore it follows that βp(at+ (1− a)u) 6 aβp(t) + (1− a)βp(u) since when t is

fixed, P (−b log |T ′|+ tfp) is decreasing in b.

To prove the second part, we will use the Implicit Function theorem and

Proposition 2.5.11. First, observe that for all (t, β) ∈ [0, 1]× [s, 1],

P (−β log |T ′|+ tfp) 6 P (−β log |T ′|)

= lim
n→∞

1

n
log

( ∑
x:Tnx=x

1

|(Tn)′(x)|β

)

6 lim
n→∞

1

n
log

 ∑
i1,...,in

(
exp

(
κΛl

1− Λ

))nβ
|Ii1 |β · · · |Iin |β


= lim

n→∞

1

n
log

(
exp

(
κΛl

1− Λ

)nβ ( ∞∑
k=1

|Ik|β
)n)

= log

( ∞∑
k=1

|Ik|β
)

+

(
κΛl

1− Λ

)β
<∞.

By Proposition 2.5.11, it follows that P (−β log |T ′|+ tfp) is analytic for all (t, β) ∈
[0, 1]× [s, 1].

Similarly, we can also show that there exists ε > 0 such that P (−β log |T ′|+
tfp) is analytic for all (t, β) ∈ [1−ε, 1+ε]× [−ε, ε]. By our assumptions on T , there

exists r > 0 such that
∑

n∈N |In|1−r < ∞. Also, since p ∈ P0 there exists C > 0
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such that pn
|In| 6 C for all n ∈ N. Therefore,

∑
n∈N

p1−r
n 6 C1−r

∑
n∈N
|In|1−r <∞.

Let (t, β) ∈ [1− r
2 , 1 + r

2 ]× [− r
2 ,

r
2 ]. Then

P (−β log|T ′|+ tfp)

6 lim
n→∞

1

n
log

 ∑
i1...in∈Nn

(pi1 . . . pin)1− r
2 |(Tn)′(Π(i1 . . . in)∞)|

r
2


= lim

n→∞

1

n
log

 ∑
i1...in∈Nn

(pi1 . . . pin)1−r(pi1 . . . pin)
r
2 |(Tn)′(Π(i1 . . . in)∞)|

r
2


6 lim

n→∞

1

n
log

 ∑
i1...in∈Nn

(pi1 . . . pin)1−r (pi1 . . . pin)
r
2

(|Ii1 | . . . |Iin |)
r
2

(
exp

(
κΛl

1− Λ

))n r
2


6 lim

n→∞

1

n
log

 ∑
i1...in∈Nn

(pi1 . . . pin)1−rCn
r
2

(
exp

(
κΛl

1− Λ

))n r
2


=
r

2

(
κΛl

1− Λ

)
+ logC

r
2 + log

(∑
k∈N

p1−r
k

)
<∞.

Therefore, by Proposition 2.5.11, P (−β log |T ′| + tfp) is analytic for all (t, β) ∈
[1− r

2 , 1 + r
2 ]× [− r

2 ,
r
2 ].

By the Implicit Function theorem, βp(t) is analytic for t ∈ (0, tp) and in a

neighbourhood of 1.

To verify (4.3) and (4.4) we follow the arguments of Ruelle [Ru]. To verify

(4.3), we differentiate (4.1) and apply the Implicit Function theorem to deduce that

−β′p(t)

∫
log |T ′|dµp,t +

∫
fpdµp,t = 0. (4.5)

To verify (4.4) we differentiate (4.5) to obtain

β′′p(t)

∫
log |T ′|dµp,t + β′p(t)

d
(∫

log |T ′|dµp,t
)

dt
−
d
(∫
fpdµp,t

)
dt

= 0.

By Proposition 2.5.13

d
(∫

log |T ′|dµp,t
)

dt
= σ2

µp,t(−β
′
p(t) log |T ′|+ fp, log |T ′|)
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and
d
(∫
fpdµp,t

)
dt

= σ2
µp,t(−β

′
p(t) log |T ′|+ fp, fp)

and therefore

β′′p(t) =
σ2
µp,t(−β

′
p(t) log |T ′|+ fp)∫

log |T ′|dµp,t
> 0. (4.6)

For the third part, observe that by Proposition 3.2.2, P (−sp log |T ′|, Tp) = 0

where sp = dim Jp 6 1 (so in particular βp(0) = 1 when p ∈ P∗ since Tp = T ) and

since P (fp, Tp) = 0 it follows that βp(1) = 0.

Figure 4.1: An example of the graph of βp(t) when p ∈ P∗.

Notice that since βp(1) = 0, it follows that µp,1 = µp. By examining the

formula (4.5) for the derivative β′p(t) at t = 1 more closely, we observe that it is

possible to write dimµp as |β′p(1)|.

Proposition 4.1.3. For p ∈ P0

dimµp =
h(µp)

χ(µp)
= −

∫
fpdµp,1∫

log |T ′|dµp,1
= −β′p(1) = |β′p(1)|.

Proof. This is a direct consequence of Proposition 3.2.1, Proposition 4.1.2 and the

fact that µp,1 = µp.
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By rewriting dimµp as the absolute value of the derivative of a function, we

are now able to exploit the tools of calculus to find an upper bound on |β′p(1)| =

dimµp. For a fixed ε > 0, we would like to show that β′p(1) is bounded away from

-1 uniformly for all p ∈ Pε. Thus, we are interested in showing that βp is convex

in some compact interval of t, where the convexity is uniform over all p ∈ Pε and

t in the chosen interval. By Proposition 4.1.2, our choice of compact interval for t

is restricted to analytic domains of βp(t), that is, the interval must lie either in a

neighbourhood of 0 or a neighbourhood of 1. Since the size of the neighbourhood

of 1 where βp is analytic is dependent on the decay properties of pn, whereas the

size of the neighbourhood at 0 is dependent on the decay properties of the intervals

|In|, it will be beneficial for us to choose the interval to lie in a neighbourhood of 0.

Remark 4.1.4. Notice that for all t ∈ [0, 1−s
4 ], βp(t) > 1+s

2 > s. To see this,

suppose that for some p ∈ P0, βp
(

1−s
4

)
< 1+s

2 . Then since β′′p(t) > 0 for all t and

since βp(1) = 0 it follows that

dimµp = |β′p(1)| 6 1 + s

2(1− 1−s
4 )

=
2s+ 2

s+ 3

which contradicts the fact that p ∈ P0.

In many arguments throughout this chapter it will be important that βp(t) > s

for all t ∈ [0, 1−s
4 ], in order to ensure summability of

∑
n∈N

1
|T ′(T−1

n x)|βp(t) for x ∈
[0, 1]. Thus in light of the above, we see that the assumption that dimµp <

2s+2
s+3 in

Definition 3.5.1 guarantees that for all p ∈ P0, βp(t) > s for all t ∈ [0, 1−s
4 ], which

allows us to employ this thermodynamic formalism approach.

Remark 4.1.5. For technical reasons that will become clear later on we will be

unable to obtain a uniform lower bound on β′′p(t) for t belonging to a neighbourhood

of 0. Therefore, we will consider intervals of t of the form [ δ2 , δ] for δ < 1−s
4 , and

on each such interval obtain a uniform lower bound for β′′p(t). Each lower bound for

β′′p(t) in [ δ2 , δ] will yield an upper bound of 1−Gε,δ for |β′p(1)|.

By (4.6), β′′p(t) =
σ2
µp,t

(−β′p(t) log |T ′|+fp)∫
log |T ′|dµp,t . Therefore we are interested in find-

ing an upper bound for the Lyapunov exponent χ(µp,t) and a lower bound for the

variance σ2
µp,t(−β

′
p(t) log |T ′| + fp). The Lyapunov exponent is not difficult to es-

timate from above, but we will delay this until Lemma 4.6.2. Instead, our primary

focus in this chapter will be obtaining a lower bound for the variance.
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4.2 Rewriting the variance

In order to obtain the desired lower bound on β′′p(t), we need to obtain a lower

bound for the variance σ2
µp,t(−β

′
p(t) log |T ′| + fp). From now on we shall denote

fp,t : [0, 1]→ R ∪ {∞} by

fp,t = −β′p(t) log |T ′|+ fp. (4.7)

This section is dedicated to rewriting σ2
p,t(fp,t) in a way that will allow us to estimate

it from below. Note that
∫
fp,tdµp,t = 0 by (4.5). Recall that by (2.13) and the fact

that the variance is invariant under adding a coboundary, it follows that

σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t + 2

∞∑
n=1

(∫
f̃p,t · f̃p,t ◦ Tnp dµp,t

)
(4.8)

for any function f̃p,t which is cohomologous to fp,t. The second term on the right

hand side of (4.8) is what makes it difficult to study lower bounds on the variance.

Therefore, our aim is to find a function f̃p,t which is cohomologous to fp,t, that is,

a coboundary Up,t − Up,t ◦ Tp such that f̃p,t = fp,t + Up,t − Up,t ◦ Tp, for which

the right hand term in (4.8) vanishes. Therefore, in the first part of this section

we introduce a family of transfer operators which will aid us towards obtaining the

appropriate function Up,t which achieves the above, that is, σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t.

Once we have rewritten the variance as the appropriate integral, we’ll describe the

strategy for obtaining a lower bound on this integral and state the main results from

the remainder of the chapter which tie together to yield this lower bound.

In some sense, the rest of this chapter can be considered independently as

an approach for getting lower estimates for the variance of some potentials. The

variance is an important thermodynamic quantity that appears in many statistical

properties of dynamical systems such as the central limit theorem. However, rela-

tively little is known about explicit estimates for the variance and to our knowledge,

lower bounds for the variance have not yet been studied.

When estimating the variance, often it is useful to introduce a transfer op-

erator, particularly when using the characterisation (4.8). Generally, one has some

flexibility over the choice of space on which to define a transfer operator. We choose

to define it on the space of bounded locally Hölder continuous functions FΛ−1 since,

as it will become clear later on in the section, we will be interested in estimating

the Hölder properties of certain potentials. In particular, we consider Λ−1-locally

Hölder continuous potentials since Λ−1 is the contraction rate of our cylinders, see
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Proposition 3.1.2.

In our case we will need a family of transfer operators which are parametrised

by p ∈ P0 and t ∈ [0, 1−s
4 ].

Definition 4.2.1. For each p ∈ P0 and 0 6 t 6 1−s
4 we define the bounded linear

operator Lp,t : FΛ−1 → FΛ−1 given by

Lp,tw(x) =
∑
Tpy=x

egp,t(y)w(y).

Note that this can be written alternatively as

Lp,tw(x) =
∑
n∈Np

egp,t(T
−1
n x)w(T−1

n x).

Notice that each operator in the family above is well-defined since for all

t ∈ [0, 1−s
4 ], βp(t) > s and so

∑
n∈Np

egp,t(T
−1
n x) <∞.

It will be more convenient for us to work with the normalised transfer oper-

ator, whose existence we know about as a result of Theorem 2.5.9.

Lemma 4.2.2. For each 0 6 t 6 1−s
4 and p ∈ P0 there exists a normalised operator

Mp,tw = h−1
p,tLp,t(hp,tw)

such that Mp,t1 = 1, where hp,t is the unique fixed point of Lp,t. Moreover,

M∗p,tµp,t = µp,t and dµp,t = hp,tdµ̃p,t where L∗p,tµ̃p,t = µ̃p,t.

Proof. By Theorem 2.5.9 and the fact that P (gp,t) = 0, for each 0 6 t 6 1−s
4 and

p ∈ P0 there exists a strictly positive function hp,t ∈ FΛ−1 , hp,t : [0, 1] → R such

that Lp,thp,t = hp,t. Therefore we can define

Mp,tw = h−1
p,tLp,t(hp,tw)

and it follows thatMp,t1 = 1. Since µp,t is the unique invariant Gibbs measure for

gp,t, by Theorem 2.5.9 it follows thatM∗p,tµp,t = µp,t. Moreover, by Theorem 2.5.9

dµp,t = hp,tdµ̃p,t where L∗p,tµ̃p,t = µ̃p,t.

The characterisation of the variance provided by (4.8) is more profitable for

producing estimates than the various other characterisations. When seeking upper

estimates, the second term on the right hand side in (4.8) can easily be dealt with,

for instance one can bound it above by knowing an explicit rate for the decay of

the correlation functions. However, when one is interested in lower estimates, this
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term makes the variance difficult to bound from below. Since (4.8) holds for any f̃p,t

which is cohomologous to fp,t, it would be useful if we could find some f̃p,t ∼ fp,t

for which ∫
(f̃p,t) · f̃p,t ◦ Tnp dµp,t = 0

for all n ∈ N. Using the properties of the transfer operator, we rewrite the above as∫
(f̃p,t) · f̃p,t ◦ Tnp dµp,t =

∫
Mn

p,t(f̃p,t · f̃p,t ◦ Tnp )dµp,t

=

∫
f̃p,t · Mn

p,t(f̃p,t)dµp,t = 0.

Writing f̃p,t = fp,t+Up,t−Up,t◦Tp for some coboundary Up,t−Up,t◦Tp, it transpires

that the property we want isMp,t(fp,t +Up,t −Up,t ◦ Tp) = 0. This leads us to the

following definition for Up,t, which we now fix.

Definition 4.2.3. For each 0 6 t 6 1−s
4 and p ∈ P0 define

Up,t =
∞∑
n=1

Mn
p,t (fp,t)

and

f̃p,t = fp,t + Up,t − Up,t ◦ Tp.

We will have to delay the proof that Up,t is well defined till Section 4.4 where

we will show that ‖Up,t‖∞ <∞ for all p ∈ P0 and t ∈ (0, δ].

As suggested above, it turns out that this definition for Up,t fits our purposes.

Lemma 4.2.4. For all p ∈ P0 and t ∈ [0, 1−s
4 ],

Mp,t(f̃p,t) =Mp,t(fp,t + Up,t − Up,t ◦ Tp) = 0.
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Proof. It follows from definition that

Mp,t(f̃p,t) = Mp,t(fp,t) +Mp,t(Up,t)−Mp,t(Up,t ◦ Tp)

= Mp,t(fp,t) +
∞∑
n=2

Mn
p,t(fp,t)−

∞∑
n=2

Mn
p,t(fp,t ◦ Tp)

=

∞∑
n=1

Mn
p,t(fp,t)−

∞∑
n=2

Mn
p,t(fp,t ◦ Tp)

=
∞∑
n=1

Mn
p,t(fp,t)−

∞∑
n=2

Mn−1
p,t (Mp,t(fp,t ◦ Tp))

=
∞∑
n=1

Mn
p,t(fp,t)−

∞∑
n=2

Mn−1
p,t (fp,t · Mp,t(1))

= 0.

As an immediate corollary to the above, we can write the variance as a single

integral as we intended.

Corollary 4.2.5. We can write

σ2
p,t(f̃p,t) =

∫
f̃2
p,tdµp,t.

Proof. By (4.8)

σ2
p,t(f̃p,t) =

∫
f̃2
p,tdµp,t + 2

∞∑
n=1

∫
f̃p,t · f̃p,t ◦ Tnp dµp,t.

Therefore,

σ2
p,t(f̃p,t) =

∫
f̃2
p,tdµp,t + 2

∞∑
n=1

∫
f̃p,t · f̃p,t ◦ Tnp dµp,t

=

∫
f̃2
p,tdµp,t + 2

∞∑
n=1

∫
Mn

p,t(f̃p,t · f̃p,t ◦ Tnp )dµp,t

=

∫
f̃2
p,tdµp,t + 2

∞∑
n=1

∫
f̃p,t · Mn

p,t(f̃p,t)dµp,t

=

∫
f̃2
p,tdµp,t
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since Mn
p,t(f̃p,t) = 0 for all n ∈ N.

Now that we have managed to find a cohomologous function f̃p,t ∼ fp,t such

that we can write the variance in the simple form σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t, we can

shift our focus to how we plan to estimate this integral in a way that will give us

the ‘gap constant’ Gε,δ that we are searching for.

We’ll begin by fixing p and t and focus on a particular method of approxi-

mating
∫
f̃2
p,tdµp,t for this specific choice of p and t. Then, using this method as a

blueprint, we’ll identify the obstacles we face before we can transform this ‘point-

wise’ estimate for
∫
f̃2
p,tdµp,t into a global estimate for more general p and t. We

begin with the ‘pointwise’ estimate for
∫
f̃2
p,tdµp,t for a fixed p and t.

Lemma 4.2.6. Fix p ∈ P and t ∈ (0, 1−s
4 ]. Suppose that

(i) [f̃p,t]Λ−1 <∞.

(ii) There exists a periodic point Π(i) = z ∈ Jp of period n and c 6= 0 such that
1
nSnfp,t(z) = c.

Then there exists m ∈ N and 1 6 k 6 n such that∫
f̃2
p,tdµp,t >

c2

4
µp,t(Iik,...,ik+m−1

). (4.9)

Proof. Let z be a point of period n such that 1
nSnfp,t(z) = c 6= 0. Since 1

nSnfp,t(z) =
1
nSnf̃p,t(z) it follows that there exists 0 6 k 6 n − 1 such that |f̃p,t(T k(z))| >
c. Without loss of generality we can assume k = 0, that is |f̃p,t(z)| > c. Since

[f̃p,t]Λ−1 < ∞ we can choose m sufficiently large such that
[f̃p,t]Λ−1

Λm 6 c
2 . Then for

all y ∈ Ii1,...,im we have

|f̃p,t(z)− f̃p,t(y)| 6
[f̃p,t]Λ−1

Λm

6
c

2
.

Since |f̃p,t(z)| > c it follows that |f̃p,t(y)| > c
2 . Thus it follows that∫

f̃2
p,tdµp,t >

c2

4
µp,t(Ii1,...,im).

Therefore, by relating the variance σ2
p,t(fp,t) to the integral

∫
f̃2
p,tdµp,t, we

can bound it from below by a ‘strip’ of the integral which is determined by an interval
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centred at an appropriate point in a periodic orbit which sees a large ergodic sum.

One simply needs to find a periodic orbit along which the ergodic sum of f̃p,t is

large, then make the interval width sufficiently small so that f̃p,t remains fairly

large within the appropriate interval.

We would like to use the strategy outlined above to estimate
∫
f̃2
p,tdµp,t

uniformly for more general p and t. We are using the word uniform in a loose way.

In order to be more precise about this, we need to examine the statement and proof

of Lemma 4.2.6 more carefully, in order to identify which estimates we’ll need to

make. By considering each of these in turn, we’ll see how each estimate depends on

p and t, so that at each stage we can choose the set of parameters for which the

corresponding estimate can be made uniform.

Firstly, we need to make sure that there exists a uniform constant c > 0 such

that for any choice of p and t we can find a periodic point Tnz = z = Π(i) for which

1

n
|Snfp,t(z)| > c. (4.10)

If each pair of parameters p and t were to give rise to a distinct periodic point z,

this would cause difficulties with finding uniform bounds for the Hölder norm and

measure later on, thus we need to find a finite set Z of periodic points, such that

for any p and t we can choose some z ∈ Z that satisfies (4.10).

As an easy consequence of the non-linearity condition in Theorem 3.3.1, we’ll

see that we can choose the set of periodic points Z = {z1, z2, z12} and the constant

c = θ
8 such that for any p ∈ P0 and t ∈ [0, 1−s

4 ] we can choose some z ∈ Z such that

(4.10) will hold. We can now provide the statement of the relevant result.

Lemma 4.2.7. Let z1, z2, z12, z21 be the periodic points fixed by (1) in Theorem

3.3.1. Recall that

θ =

∣∣∣∣log
T ′(z1)T ′(z2)

T ′(z12)T ′(z21)

∣∣∣∣ > 0.

Then for any t ∈ [0, 1−s
4 ], p ∈ P0, there exists z ∈ {z1, z2, z12} for which∣∣∣∣12S2fp,t(z)

∣∣∣∣ > θ

8
.

Secondly, we need to find an upper bound for [f̃p,t]Λ−1 which is uniform over

our set of parameters for p and t, so that we can also choose the cylinder length m

uniformly.

Since fp,t = −β′p(t) log |T ′|+ fp and fp is locally constant, the regularity of

fp,t essentially boils down to the regularity of −β′p(t) log |T ′|. For p ∈ P0, −β′p(t) 6
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1
t . Although we can slightly improve on this bound by remembering that for p ∈ P0,

β′p(1−s
4 ) > s+1

2 (so that actually −β′p(t) 6 1−s
t ), there is no way to make this

estimate uniform for small t. This means that if we let t approach 0, we lose any

uniformity on the bound. This is essentially the same problem that we face when

we pass to approximating [f̃p,t]Λ−1 instead. Therefore, for the estimate on [f̃p,t]Λ−1 ,

the best uniformity we can hope for is the existence of a uniform constant C0 such

that for all δ ∈ (0, 1−s
4 ], p ∈ P0 and t ∈ [ δ2 , δ]

[f̃p,t]Λ−1 6
C0

δ
.

Once we have obtained the constant C0, for each δ and t ∈ [ δ2 , δ] this will

correspond to a cylinder length m. This quantifies how small a cylinder we should

take in the symbolic space to ensure that f̃p,t(y) > c
2 for all y ∈ Ii1...im .

The following result is the main result that we prove which relates to finding

an upper bound on the Hölder norm of f̃p,t.

Lemma 4.2.8. The function Up,t ∈ FΛ−1 for all t ∈ (0, 1−s
4 ] and p ∈ P0. Moreover,

given any δ < 1−s
4 , the seminorm [f̃p,t]Λ−1 6 C0

δ for all t ∈ [ δ2 , δ], where C0 is a

uniform constant which is independent of p, δ and t.

Finally, we need a uniform lower bound for the measure of the cylinder

µp,t(Ii1...im), where this time ‘uniform’ means over all z = Π(i) ∈ Z as well as for

p and t in our choice of parameter set. Since the cylinder length m will have been

fixed uniformly by the previous lemma, we can focus on getting a uniform bound

on the cylinder µp,t(Ii1...in) for any fixed n. Since µp,t is Gibbs,

µp,t(Ii1...in) > C−1
p,t

(pi1 . . . pin)t

(|T ′(z)| · · · |T ′(Tn−1z)|)βp(t)

where Cp,t are the constants coming from the Gibbs property for µp,t. Clearly the

measure of this cylinder cannot be bounded uniformly from below for all p ∈ P0

since pi1 , . . . , pin could be arbitrarily close to 0. As a consequence of Lemma 4.2.7,

pi1 , . . . , pin ∈ {p1, p2}, thus we need to have some control over how small p1 and p2

can be. At this point it becomes necessary to fix some ε > 0 and we can only hope

to get uniform estimates for µp,t(Ii1...in) over p ∈ Pε and Π(i) = z ∈ Z.

The main result relating to this estimate is stated below.

Lemma 4.2.9. Define

τ = inf
x∈I1∪I2

1

|T ′(x)|
. (4.11)
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There exists some constant C > 0 such that for all ε > 0, t ∈ [0, 1−s
4 ] and p ∈ Pε,

min{µp,t(Ii1,...,in)} > C−1εtnτn

for every n ∈ N, where the minimum is taken over all Π(i) = z ∈ {z1, z2, z12}.

The remainder of the chapter is organised as follows. In Section 4.3 we prove

Lemma 4.2.7. In Section 4.4 we introduce some Hilbert-Birkhoff cone theory and

use this to prove Lemma 4.2.8, which comprises most of the work. In Section 4.5

we prove Lemma 4.2.9. Finally, in Section 4.6 we tie the proofs of the last three

lemmas together to obtain a lower bound on the variance and use this to prove the

main result of that chapter, that is, an upper bound for supp∈Pε dimµp.

4.3 Existence of good periodic orbit

In this short section we prove Lemma 4.2.7, that is, we show that there exists a finite

set Z of periodic points and a constant c > 0 such that for any choice of p ∈ P0

and t ∈ [0, 1−s
4 ] we can find a periodic point Tnz = z ∈ Z such that the ergodic

average 1
nSnf̃p,t(z) > c. This choice of periodic orbit which sees a large ergodic sum

will determine where we centre the ‘strips’ of the integral that will provide us with

a lower bound for
∫
f̃2
p,tdµp,t.

Importantly, since fp,t and f̃p,t are cohomologous, Snf̃p,t(z) = Snfp,t(z) for

any periodic point Tnz = z which means that we only actually need to study how

large fp,t is along periodic orbits.

The key ingredient for the proof of Lemma 4.3 is the non-linearity assump-

tion in Theorem 3.3.1, and in fact, the proof of this lemma is the only place that

this assumption will be used for the proof of Theorem 3.3.1. It is not difficult to

see that existence of lower bounds for fp,t are related to the non-linearity of the

map. For instance, if we consider a linear EMR map T and define the Bernoulli

measure µp where p = (|I1|, |I2|, . . .), then clearly the Bernoulli potential for p and

the geometric potential coincide, i.e. fp = − log |T ′| (and so µp is absolutely contin-

uous). Therefore, fp,t = −β′p(t) log |T ′|+ fp = β′p(t)fp + fp = −fp + fp = 0, since

β′p(t) = −1 for all t. Although β′p(t) appears in the expression for fp,t, this isn’t the

ingredient which plays a part in securing a lower bound for fp,t (and besides, this is

essentially what we’re trying to estimate). So the lower bound for fp,t is essentially

a measure of how different fp and − log |T ′| are, which is made precise by finding a

periodic orbit along which the difference is bounded from below.

The non-linearity assumption provided in Theorem 3.3.1 gives hints as to how
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we should construct our set of periodic orbits. By examining this assumption, we

see that it forces some non-linearity in one of the first two branches, since otherwise

we’d have θ =
∣∣∣log T ′(z1)T ′(z2)

T ′(z12)T ′(z21)

∣∣∣ = 0. This suggests that we should build our set

of periodic points so that their orbits visit the first and second cylinders which are

known to see some non-linearity to guarantee that we don’t end up in the same

situation as we did above. By choosing Z = {z1, z2, z12}, which are precisely the

periodic points whose iterates appear in the expression for θ, we will see that even

if fp and − log |T ′| are close when evaluated at z1 and z2, S2fp and −S2 log |T ′|
cannot be close when evaluated at z12, since fp will be additive whereas − log |T ′|
will not be additive (since T is not linear on I1 ∪ I2). Therefore they will differ by

some multiple of θ =
∣∣∣log T ′(z1)T ′(z2)

T ′(z12)T ′(z21)

∣∣∣ > 0.

Proof of Lemma 4.2.7. Fix t ∈ [0, 1−s
4 ] and p = (p1, p2, . . .) ∈ P0. Since p ∈ P0

we have a lower bound on the dimension of µp, in particular, dimµp > 2s+2
s+3 > 1

2 .

Therefore |β′p(t)| > |β′p(1)| = dimµp > 1
2 by convexity of βp, which was proved in

Proposition 4.1.2. Put

c =
θ

8
.

Without loss of generality we can assume that both

|fp,t(z1)| = | − β′p(t) log |T ′(z1)|+ log p1| < c (4.12)

and

|fp,t(z2)| = | − β′p(t) log |T ′(z2)|+ log p2| < c (4.13)

since otherwise we are done. We will show that this forces |12S2fp,t(z12)| > c, which

will complete the proof.

By (4.12) and (4.13) it follows that

1

2
| − β′p(t) log |T ′(z1)T ′(z2)|+ log p1p2| 6 c.
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Moreover

4|β′p(t)|c =
|β′p(t)|

2

∣∣∣∣log
T ′(z1)T ′(z2)

T ′(z12)T ′(z21)

∣∣∣∣
6

1

2

∣∣−β′p(t) log |T ′(z1)T ′(z2)|+ log p1p2

∣∣
+

1

2

∣∣−β′p(t) log |T ′(z12)T ′(z21)|+ log p1p2

∣∣
6

1

2

∣∣−β′p(t) log |T ′(z12)T ′(z21)|+ log p1p2

∣∣+ c.

Therefore

1

2

∣∣−β′p(t) log |T ′(z12)T ′(z21)|+ log p1p2

∣∣ > 4|β′p(t)|c− c > c

where the final inequality is because |β′p(t)| > 1
2 .

4.4 Decay of operator norms

In this section we prove Lemma 4.2.8, in particular we show that there exists a

uniform constant C0 < ∞ such that for all δ < 1−s
4 , the seminorm [f̃p,t]Λ−1 6 C0

δ

for all t ∈ [ δ2 , δ] and p ∈ P0. Recall that we would like to estimate the integral∫
f̃2
p,tdµp,t from below by a strip which is centred at an appropriate point in a

chosen periodic orbit, which will be fixed for each p and t by Lemma 4.2.7. To this

end, the constant C0 will allow us to estimate the required strip width. In particular,

we need the strip width to be sufficiently small so that f̃p,t does not drop ‘too much’

within each strip, when compared to the Birkhoff average along the periodic orbit

that has been chosen.

Recall that for all t ∈ [ δ2 , δ] and p ∈ P0, the seminorm [fp,t]Λ−1 6 κΛl

δ , since

[log |T ′|]Λ−1 6 κΛl. Therefore, the difficulty is to prove that there is a uniform

upper bound for [Up,t]Λ−1 . In fact we’ll prove something stronger. Let [f ]1 denote

the Lipschitz constant (or seminorm) of a function f : [0, 1]→ [0, 1] which is defined

by

[f ]1 = sup
x 6=y

|f(x)− f(y)|
|x− y|

.

We say that f is Lipschitz (continuous) if [f ]1 < ∞. Let C0,1([0, 1]) denote the

space of all bounded Lipschitz continuous functions. Then C0,1([0, 1]) is a Banach

space when equipped with the norm ‖·‖0,1 = [·]1 + ‖·‖∞.

Clearly, fp,t /∈ C0,1([0, 1]). However, we’ll show that for all n ∈ N, the

iterates Mn
p,tfp,t ∈ C0,1([0, 1]), and as such we can calculate an upper bound for
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[Up,t]1. Since Up,t =
∑∞

n=1Mn
p,tfp,t, this suggests that it would be useful to find

an explicit exponential decay rate for [Mn
p,tfp,t]1 in n, which is precisely where the

techniques of Hilbert-Birkhoff cone theory come in useful.

The remainder of this section is structured as follows. Firstly, in 4.4.1 we will

introduce the key ideas from Hilbert-Birkhoff cone theory which will be used. 4.4.2

and 4.4.3 will be dedicated to using these tools to obtain the relevant exponential

decay rate. In 4.4.4 we directly show thatMk
p,tfp,t ∈ C0,1([0, 1]) for each 1 6 k 6 l,

which is a necessary step before we can apply the exponential decay rate to prove

our main result. Finally in 4.4.5 we combine everything to obtain an upper bound

for [Up,t]1, which consequently provides us with an upper bound for [Up,t]Λ−1 .

4.4.1 Hilbert-Birkhoff cone theory

In this section we’ll introduce the key tools that will be used from Hilbert-Birkhoff

cone theory. A more comprehensive overview of this area, including proofs of results,

can be found in the appendix.

Hilbert-Birkhoff cone theory is concerned with the study of the action of an

operator on a cone. Let C ⊂ V \ {0} be a convex cone in a vector space V ; this

means that λw ∈ C and w1 + w2 ∈ C for all λ > 0 and all w,w1, w2 ∈ C. We can

define a partial ordering on V by

v � w ⇔ w − v ∈ C ∪ {0}.

Using this partial ordering, we can define a metric Θ on C, whose precise

definition is given in the appendix. This metric is known as a Hilbert metric or

projective metric. We say that the diameter D of a set A with respect to the metric

Θ is

D = sup{Θ(v, w) : v, w ∈ A}.

The following proposition lays the foundation for the use of cone methods in

the theory of transfer operators. This result tells us that if we have a linear operator

L : C → C such that the image L(C) has a finite diameter with respect to Θ, then

the operator is a strict contraction with respect to the metric Θ and, moreover,

the contraction ratio can be given in terms of the diameter of L(C). The following

result is a specific example of Proposition A.0.9 from the appendix, where a more

general version of the result below is stated and proved.

Proposition 4.4.1. Let L : V → V be a linear operator on a vector space and

C ⊂ V be a cone. Let D = sup{Θ(L(v), L(w)) : v, w ∈ C} be the diameter of L(C).
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Then, if D <∞,

Θ(L(v), L(w)) 6 (1− e−D)Θ(v, w).

Of course, one is typically not interested in how our operator behaves with

respect to the abstract metric Θ. Therefore, for this result to be useful, we need

a way of linking a contraction in Θ to similar behaviour in other norms - norms

which we are interested in. The following lemma provides us with this tool. This is

restated and proved as Proposition A.0.12 in the appendix.

Proposition 4.4.2. Let ‖·‖1, ‖·‖2 be two norms on V and let C ⊂ V be a convex

cone which induces the partial ordering �. Suppose there exists C > 1 such that for

all f, g ∈ V

−f � g � f ⇒ ‖g‖1 6 ‖f‖1
‖g‖2 6 C‖f‖2.

Then given any f, g ∈ C for which ‖f‖1 = ‖g‖1,

‖f − g‖2 6 C2(eΘ(f,g) − 1)‖f‖2.

We will now hone in on the specific cones and operators which we will be

working with when it comes to implementing the ideas discussed above. Let C([0, 1])

denote the space of all continuous functions on [0, 1]. We will be interested in cones

of the type Ca for some a > 0 where

Ca =
{
w ∈ C([0, 1]) : w > 0 and w(x) 6 ea|x−y|w(y)

}
.

It is easy to check that for each a > 0, Ca does indeed define a cone.

Observe that for each a > 0, Ca ⊂ C0,1([0, 1]). To see this, let f ∈ Ca. f is

continuous on a compact set and therefore is bounded. Moreover,

−(ea|x−y| − 1)f(x) 6 f(x)− f(y) 6 (ea|x−y| − 1)f(y)

for all x, y ∈ [0, 1] which implies that

|f(x)− f(y)| 6 aea‖f‖∞|x− y|

that is, f is Lipschitz with Lipschitz constant [f ]1 6 aea‖f‖∞. We’ll use this

fact several times throughout the rest of this section, therefore we state this as a
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proposition.

Proposition 4.4.3. Suppose f ∈ Ca for some a > 0. Then [f ]1 6 aea‖f‖∞.

For these types of cone, we have a direct way of checking whether the image

of a linear operator L : Ca → Ca has a finite diameter. The following lemma tells us

that it is enough to check that L(Ca) ⊂ Cλa for some λ < 1, which combined with

Proposition 4.4.1 allows us to deduce that L is a strict contraction. The next result

is restated and proved as Proposition A.0.10 in the appendix.

Proposition 4.4.4. Let a > 0 and 0 < λ < 1. Let Θ be the metric associated to

the cone Ca. Then

Dλ,a := sup{Θ(v, w) : v, w ∈ Cλa} <∞. (4.14)

Observe that if one can show that L(Ca) ⊂ Cλa for some λ < 1, then

sup{Θ(L(v), L(w)) : v, w ∈ Ca} 6 sup{Θ(v, w) : v, w ∈ Cλa}

= Dλ,a <∞

and therefore by Proposition 4.4.1,

Θ(L(v), L(w)) 6 (1− e−Dλ,a)Θ(v, w).

The following result allows us to use the partial ordering � induced by the

cone Ca to control the norms of continuous functions. This is restated and proved

as Proposition A.0.13 in the appendix.

Proposition 4.4.5. Let � be the partial ordering induced by the cone Ca for some

a > 0. Let m be a measure on [0, 1] and let L1 = L1(m). Then

−f � g � f ⇒ ‖g‖∞ 6 ‖f‖∞
‖g‖L1 6 ‖f‖L1

‖g‖0,1 6 (a+ 1)‖f‖0,1.

Observe that the result above allows us to employ Proposition 4.4.2 with the

norms ‖·‖∞, ‖·‖L1 , ‖·‖0,1. In practise, we’ll use the result for ‖·‖L1 with m = µp,t

and m = µ̃p,t, where µ̃p,t = L∗p,tµ̃p,t as defined in Lemma 4.2.2.

Since Up,t =
∑∞

n=1Mn
p,tfp,t, this suggests that the correct operator to study

would be (some iterate of) Mp,t. In fact, we will choose our operator to be the
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lth iterate Ml
p,t : Ca → Ca, where l is the integer that satisfies |(T l)′(x)| > Λl for

all x ∈ [0, 1] as part of the expanding property of the map T . We choose the lth

iterate since Hilbert-Birkhoff cone theory is implemented for uniformly expanding

maps by showing that the associated transfer operator maps sufficiently large cones

strictly inside themselves. Since we are considering T which may not necessarily be

uniformly expanding (but T l is uniformly expanding), we study the action of the

lth iterate of the transfer operator on cones. In fact, before we can prove anything

for the normalised operator, it will be necessary to study the lth iterate of the

non-normalised operator Llp,t : Ca → Ca first.

The remainder of this section is structured as follows. Firstly, we will

need to prove that our operator Ml
p,t is a contraction with respect to the met-

ric Θ. Therefore, in light of Propositions 4.4.1 and 4.4.4, we will need to show that

Ml
p,t(Ca) ⊂ Cλa for some λ < 1. This will be treated in 4.4.2.

Next, in 4.4.3, we’ll see how we can use the contraction in Θ to study

the behaviour of the operator Ml
p,t with respect to the norm ‖·‖0,1. By using

Proposition 4.4.2 with ‖·‖1 = ‖·‖L1 and ‖·‖2 = ‖·‖0,1 along with Proposition 4.4.5,

we’ll show that ‖Mln
p,tf‖0,1 decays exponentially in n whenever

∫
fdµp,t = 0 and

f ∈ C0,1([0, 1]).

In 4.4.4, we deal with the issue that fp,t /∈ C0,1([0, 1]), which is preventing

us from applying the exponential decay rate in our setting. In particular, we show

that for each 1 6 k 6 l, the kth iterate Mk
p,tfp,t ∈ C0,1([0, 1]) and we obtain upper

bounds on ‖Mk
p,tfp,t‖0,1 for 1 6 k 6 l.

Finally in 4.4.5, we combine the upper bounds on ‖Mk
p,tfp,t‖0,1 and the

exponential decay of ‖Mln
p,tf‖0,1 to prove Lemma 4.2.8.

4.4.2 Proving a contraction in Θ

The goal of this section is to find a ∈ R sufficiently large that Ml
p,t is a strict

contraction on Ca. Recall that by Proposition 4.4.1, it is enough to show that for

some a > 0, sup{Θ(v, w) : v, w ∈ Ml
p,t(Ca)} < ∞. Moreover, by Proposition 4.4.4,

it is sufficient to show that Ml
p,t(Ca) ⊂ Cλa for some λ < 1.

First, we will need to prove that the non-normalised operator Llp,t is a con-

traction on some cone Ca. Using this, we will then be able to deduce that for each

p ∈ P0 and t ∈ [0, 1−s
4 ], the fixed point hp,t belongs to the cone Ca. This will give

us some regularity properties of the fixed point hp,t that hold for all t ∈ [0, 1−s
4 ] and

p ∈ P0. These uniform regularity properties are both necessary to prove the con-

traction in Θ for the normalised operatorMl
p,t, but are also important properties in

their own right which will be used at various points in the remainder of the chapter.
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We begin with what is essentially a restatement of the locally Hölder prop-

erties of gp,t.

Lemma 4.4.6. Let p ∈ P0 and t ∈ [0, 1−s
4 ]. Then for all x, y ∈ [0, 1] and

n1, . . . , nl ∈ Nl,

|glp,t(T−1
n1,...,nl

x)− glp,t(T−1
n1,...,nl

y)| 6 lκ|x− y|. (4.15)

Proof. Clearly it is enough to show that for any 1 6 k 6 l,

|gp,t(T−1
n1,...,nk

x)− gp,t(T−1
n1,...,nk

y)| 6 κ|x− y|. (4.16)

Since fp is locally constant, the left hand side of (4.16) equals

βp(t)| log |T ′(T−1
n1,...,nk

x)| − log |T ′(T−1
n1,...,nk

y)|| 6 sup
z∈In1

∣∣∣∣T ′′n1
(z)

T ′n1
(z)

∣∣∣∣ |T−1
n1,...,nk

x− T−1
n1,...,nk

y|

6 sup
z∈In1

|T ′′n1
(z)|

|T ′n1
(z)|

sup
z∈In1

1

|T ′n1
(z)|
|x− y|

6 κ|x− y|.

Then (4.15) directly follows.

Using the regularity of gp,t, we can deduce that for sufficiently large a0 and

some λ0 < 1 (which is related to the contraction rate of the map T ), then Llp,tCa0 ⊂
Cλ0a0 .

Lemma 4.4.7. There exists λ0 < 1 and a0 > 0 such that for all p ∈ P0 and

t ∈ [0, 1−s
4 ], Llp,tCa0 ⊆ Cλ0a0.

Proof. Fix t ∈ [0, 1−s
4 ] and p ∈ P0. Let a0 > 0. Clearly, if w > 0 then Llp,tw > 0.

Let w ∈ Ca0 and x, y ∈ [0, 1]. Recall that |(T l)′| > Λl on [0, 1]. In particular, this

means that any local inverse branch of T l must be contracting by 1
Λl

. Using this
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fact and (4.15) we obtain

(Llp,tw)(x) =
∑
n∈Nlp

eg
l
p,t(T

−1
n x)w

(
T−1
n x

)
6

∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
e(lκ|x−y|+a0|T−1

n x−T−1
n y|)

6
∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
e

(lκ+
a0
Λl

)|x−y|

6
∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
e

(lκ+
a0
Λl

)|x−y|

Choose 1
Λl
< λ0 < 1 and a0 > lκ

λ0− 1

Λl

. Then it follows that

(Llp,tw)(x) 6 (Llp,tw)(y)ea0λ0|x−y|. (4.17)

Finally, we verify that Llp,tw ∈ C([0, 1]). Recall that supx |(Llp,t1)(x)| < ∞ by our

choice of p and t, so ‖Llp,tw‖∞ 6 ‖w‖∞ supx |(Llp,t1)(x)| <∞. By (4.17),

−(ea0λ0|x−y| − 1)Llp,t(x) 6 Llp,t(x)− Llp,t(y) 6 (ea0λ0|x−y| − 1)Llp,t(y)

and so

|Llp,tw(x)− Llp,tw(y)| 6 (ea0λ0|x−y| − 1)Llp,tw(y)

6 a0e
a0 |x− y|‖Llp,tw‖∞

which completes the proof.

By Propositions 4.4.1 and 4.4.4, Llp,t is a contraction in Θ with contraction

ratio 1− e−Dλ0,a0 , where

Dλ0,a0 = sup{Θ(v, w) : v, w ∈ Cλ0a0} <∞

is provided by Lemma 4.4.4.

Next, we would like to prove the analogous result for the normalised operator

Ml
p,t. By Lemma 2.5.9, we know that for each operator Lp,t there exists a unique

fixed point hp,t and, moreover, Mp,t = h−1
p,tLp,t(hp,t·). Therefore, before we can

prove the analogous result for Ml
p,t, we first require some regularity properties

of the fixed point hp,t, which is what the following lemma will provide. This is

an important result in its own right, for instance, by using the uniform regularity
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properties of hp,t we will be able to obtain uniform Gibbs constants for the measures

µp,t in Section 4.5.

Lemma 4.4.8. Each hp,t ∈ Ca0 where a0 is fixed uniformly via Lemma 4.4.7. In

particular,

e−a 6 inf
x,y

hp,t(x)

hp,t(y)
6 sup

x,y

hp,t(x)

hp,t(y)
6 ea

and

sup
x

[hp,t]0,1
hp,t(x)

6 ae2a

for all a > a0 and all p ∈ P0, t ∈ [0, 1−s
4 ].

Proof. We will show that for each p and t we can find a fixed point of Lp,t inside

Ca0 . Since we know that the fixed point is unique, it will follow that this is hp,t.

Let p and t be arbitrary and denote L = Lp,t. Let N ∈ N and consider

integers m,n > N . Fix D = Dλ0,a0 . For each 0 6 k 6 l − 1, we can apply

Propositions 4.4.1 and 4.4.4 to Lk1 and obtain

Θ(Lln+k1,Llm+k1) 6 (1− e−D)NΘ(Ll(n−N)+k1,Ll(m−N)+k1) 6 D(1− e−D)N .

Let L1 = L1(µ̃p,t). Since ‖Lk1‖L1 = ‖1‖L1 for all k ∈ N, we can apply Proposition

4.4.2 to the norms ‖·‖1 = ‖·‖L1 and ‖·‖2 = ‖·‖∞ to deduce that for all n,m > N ,

‖Lln+k1− Llm+k1‖∞ 6 (eΘ(Lln+k1,Llm+k1) − 1)‖1‖∞
6 eD(1−e−D)N − 1

6 eDD(1− e−D)N .

This implies that Ln1 is Cauchy for ‖·‖∞ since 1 − e−D < 1. Thus the limit

limn→∞ Ln1 ∈ Ca0 and is a fixed point of L. By recalling that L = Lp,t and since p

and t were arbitrary, it follows that hp,t ∈ Ca0 for all p and t ∈ [0, 1−s
4 ]. Moreover,

since Ca0 ⊆ Ca for a > a0 it follows that hp,t ∈ Ca for all p and t ∈ [0, 1−s
4 ]. By

Proposition 4.4.3, [hp,t]1 6 aea‖hp,t‖∞. Therefore, supx
[hp,t]1
hp,t(x) 6 supx ae

a ‖hp,t‖∞
hp,t(x) 6

ae2a.

Now, using the regularity properties of the fixed point, we can prove the

analogue of Lemma 4.4.7 for the normalised operator Ml
p,t.

Lemma 4.4.9. There exists λ1 < 1 and a1 > 0 such that for all p ∈ P0 and

t ∈ [0, 1−s
4 ], Ml

p,tCa1 ⊆ Cλa1. Moreoever,

Dλ1,a1 = sup{Θ(v, w) : v, w ∈ Cλ1a1} <∞
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and

Θ(Ml
p,t(v),Ml

p,t(w)) 6 (1− e−Dλ1,a1 )Θ(v, w).

Proof. Fix t ∈ [0, 1−s
4 ] and p ∈ P0. Let a0 be fixed by Lemma 4.4.7 and let a1 > 0.

Let w ∈ Ca1 and x, y ∈ [0, 1]. Similarly to Lemma 4.4.7 we see that

(Ml
p,tw)(x) = h−1

p,t(x)
∑
n∈Nlp

eg
l
p,t(T

−1
n x)w

(
T−1
n x

)
hp,t

(
T−1
n x

)
6 h−1

p,t(x)
∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
hp,t(T

−1
n y)e(lκ|x−y|+(a0+a1)|T−1

n x−T−1
n y|)

6 h−1
p,t(y)ea0|x−y|

∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
hp,t(T

−1
n y)e

(lκ+
a0+a1

Λl
)|x−y|

6 h−1
p,t(y)

∑
n∈Nlp

eg
l
p,t(T

−1
n y)w

(
T−1
n y

)
hp,t(T

−1
n y)e

(lκ+
(Λl+1)a0+a1

Λl
)|x−y|

.

Choose 1
Λl
< λ1 < 1 and a1 >

lκ+( Λl+1

Λl
)a0

λ1− 1

Λl

. Then it follows that

(Ml
p,tw)(x) 6 (Ml

p,tw)(y)ea1λ1|x−y|. (4.18)

Clearly, since hp,t > 0, if w > 0 then Ml
p,tw > 0. We can verify that Ml

p,tw ∈
C([0, 1]) in the same way that we did in Lemma 4.4.7, namely, we observe that

supx(Ml
p,tw)(x) 6 ‖w‖∞ and therefore by (4.18)

|Ml
p,tw(x)−Ml

p,tw(y)| 6 a1e
a1‖w‖∞|x− y|.

Therefore, we have proved that Ml
p,tCa1 ⊂ Cλ1a1 .

By Proposition 4.4.4, Dλ1,a1 < ∞ and by Proposition 4.4.1, the final part

follows.

For the remainder of this chapter, we fix a = max{1, a1} and D = Dλ1,a1 .

4.4.3 Exponential decay of ‖Mln
p,tf‖0,1

In the previous section, we showed that Ml
p,t : Ca → Ca was a contraction in Θ. In

this section, we will apply Propositions 4.4.2 and 4.4.5 and the contraction in Θ to

study ‖Mln
p,tf‖0,1 instead. In particular, we will find an explicit rate of exponential

decay for ‖Mln
p,tf‖0,1 whenever f ∈ C0,1([0, 1]) and

∫
fdµp,t = 0.

Before we can obtain an exponential decay rate for ‖Mn
p,tf‖0,1, we need a

uniform bound on the operator norms ofMp,t, that is, some uniform constant A for
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which ‖Mp,tf‖0,1 6 A‖f‖0,1 for all f ∈ C0,1([0, 1]). In fact, although such A exists,

we will only actually require a bound ‖Mp,tf‖0,1 6 A‖f‖0,1 which holds for any

f ∈ Ca. Therefore we will find this instead, since we can obtain this almost directly

from the definition of Ca. Note that alternatively, we could prove this by proving a

‘Lasota-Yorke inequality’.

Lemma 4.4.10 (Uniformity of operator norms). There exists a uniform constant

A = 1 + aea such that for all p ∈ P0, t ∈ [0, 1−s
4 ] and n ∈ N,

‖Mln
p,tf‖0,1 6 A‖f‖0,1

for all f ∈ Ca.

Proof. Firstly, we can immediately see that ‖Mk
p,tf‖∞ 6 ‖f‖∞ for all k ∈ N. Next,

since f ∈ Ca, by Lemma 4.4.9 it follows that Mln
p,tf ∈ Ca as well, and therefore by

Proposition 4.4.3, [Mln
p,tf ]1 6 aea‖Mln

p,tf‖∞ 6 aea‖f‖∞.

Putting these together, we see that ‖Mp,tf‖0,1 6 (aea + 1)‖f‖∞ 6 (aea +

1)‖f‖0,1.

Now we are ready to prove that ‖Mln
p,tf‖0,1 decays exponentially whenever

f ∈ C0,1([0, 1]) and
∫
fdµp,t = 0. This result will essentially be the backbone of the

proof of Lemma 4.2.8.

Lemma 4.4.11. Fix p ∈ P0 and t ∈ [0, 1−s
4 ]. There exist uniform constants 0 <

C <∞ and 0 < ρ < 1 such that

‖Mln
p,tf‖0,1 6 Cρn‖f‖0,1

for all f ∈ C0,1([0, 1]) such that
∫
fdµp,t = 0.

Proof. Let f ∈ C0,1([0, 1]) for which
∫
fdµp,t = 0. If f is constant, f = 0 since its

integral is 0 and thus the result follows trivially. If f is not constant, ‖f‖0,1 > 0. Let

f1 and f2 be the positive and negative parts of f respectively, so that f = f1 − f2

with f1, f2 > 0. We can guarantee that they belong to a cone by adding a constant.
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In particular, fi + ‖f‖0,1 ∈ C1 for each i since

fi(x) + ‖f‖0,1
fi(y) + ‖f‖0,1

= exp

(
log

(
fi(x) + ‖f‖0,1
fi(y) + ‖f‖0,1

))
= exp

(
log

(
fi(x)− fi(y)

fi(y) + ‖f‖0,1
+ 1

))
6 exp

(
log

(
‖f‖0,1|x− y|
fi(y) + ‖f‖0,1

+ 1

))
6 exp

(
‖f‖0,1|x− y|
fi(y) + ‖f‖0,1

)
6 exp

(
‖f‖0,1|x− y|
‖f‖0,1

)
= exp(|x− y|)

where the fourth line follows because log(1 + z) 6 z for any z > −1. Denote

η = ‖f‖0,1. Then fi + η ∈ Ca, where a was fixed at the end of Section 4.4.2. Denote

M =Mp,t. Then since
∫
f1dµp,t =

∫
f2dµp,t we have

‖Mlnf‖0,1 = ‖Mlnf1 −Mlnf2‖0,1
= ‖Mln(f1 + η)−Mln(f2 + η)‖0,1

6

∥∥∥∥Mln(f1 + η)−
∫

(f1 + η)dµp,t1

∥∥∥∥
0,1

+

∥∥∥∥Mln(f2 + η)−
∫

(f2 + η)dµp,t1

∥∥∥∥
0,1

.

Now, since Mln(Ca) ⊂ Ca, we have Mln(fi + η) ∈ Ca (and clearly
∫

(fi +

η)dµp,t1 ∈ Ca as well). Moreover, denoting L1 = L1(µp,t) it follows that ‖Mln(fi +

η)‖L1 = ‖
∫

(fi + η)dµp,t1‖L1 thus we can apply Propositions 4.4.2 and 4.4.5 for

‖·‖1 = ‖·‖L1 and ‖·‖2 = ‖·‖0,1 to obtain

‖Mlnf‖0,1 6 (1 + a)2(eΘ(Mln(f1+η),(
∫
f1+η)1)) − 1)‖Mln(f1 + η)‖0,1

+(1 + a)2(eΘ(Mln(f2+η),(
∫
f2+η)1)) − 1)‖Mln(f2 + η)‖0,1.

Next, since Mln((
∫
fi + η)1) = (

∫
fi + η)1 we can apply Theorem 4.4.1 to
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get

‖Mlnf‖0,1 6 (1 + a)2(e(1−e−D)nΘ(f1+η,(
∫
f1+η)1) − 1)‖Mln(f1 + η)‖0,1

+(1 + a)2(e(1−e−D)nΘ(f2+η,(
∫
f2+η)1) − 1)‖Mln(f2 + η)‖0,1

6 (1 + a)2(e(1−e−D)nD − 1)(‖Mln(f1 + η)‖0,1 + ‖Mln(f2 + η)‖0,1)

6 (1 + a)2D(1− e−D)neD(1−e−D)n(‖Mln(f1 + η)‖0,1 + ‖Mln(f2 + η)‖0,1)

6 (1 + a)2DeD(1− e−D)n(‖Mln(f1 + η)‖0,1 + ‖Mln(f2 + η)‖0,1)

6 (1 + a)2ADeD(1− e−D)n(‖f1 + η‖0,1 + ‖f2 + η‖0,1)

6 (1 + a)2ADeD(1− e−D)n(‖f1‖0,1 + ‖f2‖0,1 + 2η)

6 4(1 + a)2ADeD(1− e−D)n‖f‖0,1

where A is the uniform constant from Lemma 4.4.10.

4.4.4 Upper bounds on ‖Mk
p,t(fp,t)‖0,1

Notice that we cannot immediately apply Lemma 4.4.11 to prove Lemma 4.2.8 since

fp,t /∈ C0,1([0, 1]).

In this section we show that even though fp,t /∈ C0,1([0, 1]), for every 1 6

k 6 l the functions Mk
p,tfp,t ∈ C0,1([0, 1]). This will ultimately allow us find an

upper bound for [Up,t]1 by applying Lemma 4.4.11 to Mk
p,tfp,t. Therefore, we need

to get upper bounds on sup16k6l‖Mk
p,tfp,t‖0,1.

We’ll begin with the easy upper bound for ‖Mk
p,tfp,t‖∞. After this we’ll

calculate [Mp,tfp,t]1. Finally, we’ll bound [Mk
p,tfp,t]1 above by a constant multiple

of ‖Mp,tfp,t‖0,1 and use this to estimate sup16k6l‖Mk
p,tfp,t‖0,1.

Define

ϑ =
2

e(1− s)
. (4.19)

Let α > 0 be fixed. Since t = e
1
α is a maximum on [1,∞) for f(t) = log t

tα and

f(e
1
α ) = 1

αe , by setting α = 1−s
2 and t = |T ′(x)| it follows that

log |T ′(x)|
|T ′(x)|

1−s
2

6 ϑ (4.20)

for all x ∈ [0, 1]. Also, recall that

q = log

(
sup

x∈(0,1)

∞∑
n=1

1

|T ′(T−1
n x)|s

)
. (4.21)
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Since for all t 6 1−s
4 and p ∈ P0, βp(t) > 1+s

2 , the combination of (4.20) and (4.21)

gives that

∑
n∈Np

sup
x∈In

log |T ′(x)|
|T ′(x)|βp(t)

6
∑
n∈Np

sup
x∈In

log |T ′(x)|
|T ′(x)|

s+1
2

=
∑
n∈Np

sup
x∈In

log |T ′(x)|
|T ′(x)|

1−s
2

1

|T ′(x)|s
6 ϑeq.

Finally, let δ < 1−s
4 . Since βp(t) > 1+s

2 for all p ∈ P0 and t ∈ [ δ2 , δ],

−β′p(t) 6
1− s+1

2
δ
2

=
1− s
δ

6
1

δ
(4.22)

for all t ∈ [ δ2 , δ]. We will also need the following easy technical result, in order to

bound ptn log pn.

Lemma 4.4.12. |xt log x| 6 1
ε for all x ∈ [0, 1] and t > ε.

Proof. For a fixed t ∈ (0, 1) define αt(x) = xt log x for x ∈ [0, 1]. Differentiating

with respect to x we obtain

d

dx
(αt(x)) = txt−1 log x+ xt−1 = xt−1(t log x+ 1).

Clearly the only turning point in [0, 1] is x = e−
1
t and since αt(0) = αt(1) = 0 this

is a local minimum for αt, that is, a local maximum for |xt log x|. Moreover, for

t > ε > 0,

αt(e
− 1
t ) = e−1 log e−

1
t = −1

t
e−1 > −1

ε
e−1 = αε(e

− 1
ε ).

Therefore,

|xt log x| 6 |αt(e−
1
t )| 6 |αε(e−

1
ε )| = 1

ε
e−1 6

1

ε
.

We are now ready to obtain an upper bound on ‖Mk
p,tfp,t‖∞ which will hold

for all k ∈ N.

Lemma 4.4.13. For all p ∈ P0, t ∈ [ δ2 , δ] and k > 1,

‖Mk
p,tfp,t‖∞ 6

2ea+qϑ

δ
.
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Proof. First we fix k = 1. Then,

‖Mp,tfp,t‖∞ = sup
x

∣∣∣∣∣∣ 1

hp,t(x)

∑
n∈Np

−ptnβ′p(t) log |T ′(T−1
n x)|+ ptn log pn

|T ′(T−1
n x)|βp(t)

hp,t(T
−1
n x)

∣∣∣∣∣∣
6 sup

x 6=y

hp,t(x)

hp,t(y)

2

δ
sup
x

∣∣∣∣∣∣
∑
n∈Np

log |T ′(T−1
n x)| − 1

|T ′(T−1
n x)|βp(t)

∣∣∣∣∣∣
6

2ea

δ

∑
n∈Np

sup
x∈In

log |T ′(T−1
n x)|

|T ′(T−1
n x)|βp(t)

6
2ea+qϑ

δ
.

For k > 2, we just need to observe that

‖Mk
p,tfp,t‖∞ 6 ‖Mk−1

p,t (fp,t)‖∞ 6 ‖Mp,tfp,t‖∞ 6
2ea+qϑ

δ
.

We now begin the work towards bounding [Mk
p,tfp,t]1. We will do this in two

steps. First we bound [Mp,tfp,t]1 directly from the definition of Mp,tfp,t. Then,

using ideas from the proof of Lemma 4.4.11 we’ll find a way of bounding [Mk
p,tfp,t]1

from above by ‖Mp,tfp,t‖0,1.

The next result is a preparatory lemma for calculating [Mp,tfp,t]1.

Lemma 4.4.14. Let

wn :=
log |T ′ ◦ T−1

n | − 1

|T ′ ◦ T−1
n |βp(t)

.

Then

[wn]1 6 κ sup
z∈In

∣∣∣∣(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)

∣∣∣∣ .
Proof. Putting vn = log |T ′n|−1

|T ′n|βp(t) and differentiating, we get

|v′n| =
∣∣∣∣T ′′n (1− βp(t) + βp(t) log |T ′n|)

|T ′n|βp+1

∣∣∣∣ .
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Therefore, for all x, y,

|wn(x)− wn(y)| 6 sup
z∈In

∣∣∣∣ |T ′′n (z)|(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)+1

∣∣∣∣ |T−1
n x− T−1

n y|

6 sup
z∈In

∣∣∣∣T ′′n (z)(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)+1

∣∣∣∣ sup
z∈In

1

T ′n(z)
|x− y|

6 sup
z,z′∈In

∣∣∣∣T ′′n (z)(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)+1|T ′n(z′)|

∣∣∣∣ |x− y|
6 κ sup

z∈In

∣∣∣∣1− βp(t) + βp(t) log |T ′n(z)|
|T ′n(z)|βp(t)

∣∣∣∣ |x− y|.
Therefore,

[wn]1 6 κ sup
z∈In

∣∣∣∣1− βp(t) + βp(t) log |T ′n(z)|
|T ′n(z)|βp(t)

∣∣∣∣ .

Using this bound we can estimate [Mp,tfp,t]1.

Lemma 4.4.15. For all p ∈ P0 and t ∈ [ δ2 , δ],

[Mp,tfp,t]1 6
6(1 + ϑ)aκe2a+q

δ
.

Proof. Recall that

Mp,tfp,t(x) =
1

hp,t(x)

∑
n∈Np

−β′p(t)ptn log |T ′(T−1
n x)|+ ptn log pn

|T ′(T−1
n x)|βp(t)

hp,t(T
−1
n x). (4.23)

To obtain the desired bound we will make use of the straightforward inequality

[uv]1 6 ‖u‖∞[v]1 + [u]1‖v‖∞. (4.24)

First, applying (4.24) to (4.23) with

u = 1
hp,t

and v =
∑

n∈Np

−β′p(t)ptn log |T ′◦T−1
n |+ptn log pn

|T ′◦T−1
n |βp(t) hp,t ◦ T−1

n

we obtain

[Mp,tfp,t]1 6 ‖h−1
p,t‖∞[v]1 + [h−1

p,t]1‖v‖∞. (4.25)

By an easy modification of the arguments in Lemma 4.4.13 we have ‖v‖∞ 6
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2eqϑ
δ ‖hp,t‖∞. Thus it remains to calculate

[v]1 6
∑
n∈Np

[
−β′p(t)ptn log |T ′ ◦ T−1

n |+ ptn log pn

|T ′ ◦ T−1
n |βp(t)

hp,t ◦ T−1
n

]
1

. (4.26)

Next, applying (4.24) again to each of the terms on the right hand side of (4.26)

with

un = hp,t ◦ T−1
n and vn =

−β′p(t)ptn log |T ′◦T−1
n |+ptn log pn

|T ′◦T−1
n |βp(t)

we obtain that

[unvn]1 6 ‖hp,t‖∞[vn]1 + [hp,t]1‖vn‖∞.

By Lemma 4.4.14,

[vn]1 6
2

δ

[
log |T ′ ◦ T−1

n | − 1

|T ′ ◦ T−1
n |βp(t)

]
1

6
2κ

δ
sup
z∈In

∣∣∣∣(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)

∣∣∣∣ .
Therefore

[v]1 6 ‖hp,t‖∞
2κ

δ

∑
n∈Np

sup
z∈In

∣∣∣∣(1− βp(t) + βp(t) log |T ′n(z)|)
|T ′n(z)|βp(t)

∣∣∣∣
+[hp,t]1

2

δ

∑
n∈Np

sup
x∈In

∣∣∣∣ log |T ′(x)| − 1

|T ′(x)|βp(t)

∣∣∣∣
6

2(1 + ϑ)eqκ

δ
‖hp,t‖∞ +

2(1 + ϑ)eq

δ
[hp,t]1.

Recall that by Lemma 4.4.8, ‖hp,t‖∞‖h−1
p,t‖∞ 6 ea and [hp,t]1‖h−1

p,t‖∞ 6 aea. Also,

observe that [h−1
p,t]1 6 ‖h−1

p,t‖2∞[hp,t]1. Plugging all of this into (4.25) we get

[Mp,tfp,t]1 6 ‖h−1
p,t‖∞

(
2(1 + ϑ)eqκ

δ
‖hp,t‖∞ +

2(1 + ϑ)eq

δ
[hp,t]1

)
+

2eqϑ

δ
‖hp,t‖∞[h−1

p,t]1

6
2(1 + ϑ)ea+qκ

δ
+

2(1 + ϑ)aea+q

δ
+

2ae2a+qϑ

δ

6
6(1 + ϑ)aκe2a+q

δ
.

Now, all that remains is to find an upper bound for [Mk
p,tfp,t]1 for all 1 6

k 6 l. To save us having to bound it directly as we did above, we use some ideas
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from the proof of Lemma 4.4.11 to estimate [Mk
p,tfp,t]1 in terms of ‖Mp,tfp,t‖0,1.

In particular, we show that the positive and negative parts of Mp,tfp,t (plus a

constant) belong to a cone, and by applying the operator we show that each iterate

of these also belongs to a (larger) cone. At this point, we will be able to apply

Proposition 4.4.3 to bound their [·]1 seminorms. Note that alternatively, at this

point we could instead deduce the desired result from Lemmas 4.4.13 and 4.4.15 by

proving a ‘Lasota-Yorke inequality’.

Lemma 4.4.16. For all p ∈ P0 and t ∈ [ δ2 , δ] and 1 6 k 6 l,

[Mk
p,tfp,t]1 6 2a′ea

′‖Mp,tfp,t‖0,1

where a′ = (l − 1)κ+ 2a+ 1.

Proof. Let w1, w2 denote the positive and negative parts of w = Mp,tfp,t respec-

tively, so that w = w1 − w2. In particular,

w1(x) =
1

hp,t(x)

∑
n∈Np

−β′p(t)ptn log |T ′(T−1
n x)|

|T ′(T−1
n x)|βp(t)

hp,t(T
−1
n x) > 0

w2(x) =
1

hp,t(x)

∑
n∈Np

−ptn log pn

|T ′(T−1
n x)|βp(t)

hp,t(T
−1
n x) > 0.

Define vi = wi + [w]1. Then by an argument similar to that which we used in the

proof of Lemma 4.4.11, we can show that vi ∈ C1. In particular

wi(x) + [w]1
wi(y) + [w]1

= exp

(
log

(
wi(x) + [w]1
wi(y) + [w]1

))
= exp

(
log

(
wi(x)− wi(y)

wi(y) + [w]1
+ 1

))
6 exp

(
log

(
[w]1|x− y|
wi(y) + [w]1

+ 1

))
6 exp

(
[w]1|x− y|
wi(y) + [w]1

)
6 exp

(
[w]1|x− y|

[w]1

)
= exp(|x− y|)

where the fourth line follows because log(1 + z) 6 z for any z > −1. Therefore, by

adapting the argument in Lemma 4.4.9 we can see that Mk
p,tvi ∈ C(l−1)κ+2a+1 for
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each 1 6 k 6 l − 1. In particular

(Mk
p,tvi)(x) = h−1

p,t(x)
∑
n∈Nkp

eg
k
p,t(T

−1
n x)vi(T

−1
n x)hp,t(T

−1
n x)

6 h−1
p,t(y)

∑
n∈Nkp

eg
k
p,t(T

−1
n y)vi(T

−1
n y)hp,t(T

−1
n y)e(kκ+a)|x−y|+(a+1)|T−1

n x−T−1
n y|

6 h−1
p,t(y)

∑
n∈Nkp

eg
k
p,t(T

−1
n y)vi(T

−1
n y)hp,t(T

−1
n y)e(kκ+2a+1)|x−y|

6 (Mk
p,tvi)(y)e((l−1)κ+2a+1)|x−y|.

Put a′ = (l − 1)κ+ 2a+ 1. It follows that for each 2 6 k 6 l,

[Mk
p,tfp,t]1 = [Mk−1

p,t v1 −Mk−1
p,t v2]1

6 [Mk−1
p,t v1]1 + [Mk−1

p,t v2]1

6 a′ea
′
(‖v1‖∞ + ‖v2‖∞)

where the last line follows by Proposition 4.4.3. Since ‖vi‖∞ = ‖wi + [w]1‖∞ =

‖wi‖∞ + [w]1 = ‖w‖0,1 we obtain

[Mk
p,tfp,t]1 6 2a′ea

′‖Mp,tfp,t‖0,1.

Finally, by tying the last few results together, we can find an upper bound

for sup16k6l‖Mk
p,tfp,t‖0,1.

Lemma 4.4.17. There exists some uniform constant

E = 2e2a+q(1 + ϑ)(1 + 2a′ea
′
+ 6aκ)

such that for all p ∈ P0, δ < 1−s
4 and t ∈ [ δ2 , δ],

sup
16k6l

‖Mk
p,tfp,t‖0,1 6

E

δ
.

Proof. By Lemmas 4.4.13 and 4.4.16,

‖Mk
p,tfp,t‖0,1 6

2ea+qϑ

δ
+ 2a′ea

′‖Mp,tfp,t‖0,1.
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By Lemma 4.4.15,

‖Mk
p,tfp,t‖0,1 6

2ea+qϑ

δ
+ 2a′ea

′
(

2ea+qϑ

δ
+

6(1 + ϑ)aκe2a+q

δ

)
.

4.4.5 Proof of Lemma 4.2.8

Lemma 4.4.11 provided us with an exponential decay rate for ‖Mk
p,tf‖0,1 whenever

the function f satisfied f ∈ C0,1([0, 1]) and
∫
fdµp,t = 0. In Section 4.4.4, we

showed thatMk
p,tfp,t ∈ C0,1([0, 1]) for each 1 6 k 6 l. Combining this with the fact

that
∫
fp,tdµp,t = 0 by definition (see (4.5)), we are in the position to prove Lemma

4.2.8.

Proof of Lemma 4.2.8. By Theorem 4.4.11 there exist uniform constants C and ρ

which are independent of p and t such that for all p and all t ∈ [ δ2 , δ],

‖Up,t‖0,1 =

∥∥∥∥∥
∞∑
n=1

Mn
p,t(fp,t)

∥∥∥∥∥
0,1

6
∞∑
n=1

‖Mn
p,t(fp,t)‖0,1

6 ‖Mp,t(fp,t)‖0,1(1 +
∞∑
n=1

Cρn)

+‖M2
p,t(fp,t)‖0,1(1 +

∞∑
n=1

Cρn)

...

+‖Ml
p,t(fp,t)‖0,1(1 +

∞∑
n=1

Cρn)

6
C

1− ρ

(
‖Mp,tfp,t‖0,1 + · · ·+ ‖Ml

p,tfp,t‖0,1
)

6
lCE

1− ρ
1

δ

where the third line follows by linearity ofMp,t and the final line follows by Lemma

4.4.17.

Since [log |T ′|]Λ−1 6 κΛl and fp is locally constant

[fp,t]Λ−1 6 |β′p(t)|κΛl 6 |β′p(
δ

2
)|κΛl.
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By (4.22), |β′p( δ2)| 6 1
δ and therefore

[fp,t]Λ−1 6
κΛl

δ
.

Put C1 = lCE
1−ρ . Since [Up,t]1 6 C1

δ , it follows that if x, y ∈ Ii1,...,in ,

|Up,t(x)− Up,t(y)| 6
C1

δ
|x− y| 6 C1

δ
|Ii1,...,in | 6

C1Λl−1

δ

1

Λn
.

Therefore,

[Up,t]Λ−1 6
C1Λl−1

δ
.

Similarly, if x, y ∈ Ii1...in for some n > 2,

|Up,t(Tx)− Up,t(Ty)| 6
C1

δ
|Tx− Ty| 6 C1

δ
|Ii2,...,in | 6

C1Λl

δ

1

Λn

whereas if x, y ∈ Ik for some k ∈ N,

|Up,t(Tx)− Up,t(Ty)| 6
C1

δ
|Tx− Ty| 6 C1

δ
=
C1

δ

Λ

Λ
.

Therefore,

[Up,t ◦ T ]Λ−1 6
C1Λl

δ
.

Putting this all together we get

[f̃p,t]Λ−1 6 [fp,t]Λ−1 + [Up,t ◦ T ]Λ−1 + [Up,t]Λ−1

6
κΛl

δ
(1 + 2C1) =:

C0

δ
.

We return back to our goal of estimating the integral
∫
f̃2
p,tdµp,t from below.

Fix some p ∈ P0, δ < 1−s
4 and t ∈ [ δ2 , δ]. Suppose that we have a point z = Π(i)

for which |f̃p,t(z)| > c, and we are interested in finding a cylinder Ii1...in such that

for all y ∈ Ii1...in , |f̃p,t(y)| > c
2 . Then the above result tells us that it is enough to

choose n large enough so that

Λn >
2C0

δc
.

Then for all x, y ∈ Ii1...in ,

|f̃p,t(x)− f̃p,t(y)| 6 C0

δ

1

Λn
6
c

2
.
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Since by construction z ∈ Ii1...in , it follows that |f̃p,t(y)| > c
2 for any y ∈ Ii1...in .

Therefore, we will be interested in values of n where

n >
log
(

2C0
δc

)
log Λ

.

4.5 Estimates on the measure

In this short section we prove Lemma 4.2.9, that is, we find a lower bound for the

measure µp,t(Ii1...in) of any cylinder Ii1...in that some z ∈ Z may belong to.

By definition, µp,t is a Gibbs measure for the potential gp,t and thus we know

that for each p and t there exists a constant 0 < Cp,t <∞ for which

C−1
p,t

(pi1 · · · pin)t

|T ′(z) · · ·T ′(Tn−1z)|βp(t)
6 µp,t(Ii1...in) 6 Cp,t

(pi1 · · · pin)t

|T ′(z) · · ·T ′(Tn−1z)|βp(t)
.

(4.27)

It is easy to see that if pi1 , . . . , pin are small, this produces a lower bound which is

arbitrarily close to 0. In our setting, since the digits ij ∈ {1, 2}, this means that

we cannot get a uniform lower bound for the measure of such a cylinder unless we

impose a lower bound on p1 or p2. Therefore, we fix ε > 0 and obtain uniform lower

bounds across p ∈ Pε.
Although (4.27) holds for each p ∈ P0 and t ∈ [0, 1−s

4 ] for some constant Cp,t,

it is not obvious whether the constants can be chosen uniformly. Therefore, the main

obstacle is to ensure that we can find a uniform upper bound for the constants Cp,t

for p ∈ P0 and t ∈ [0, 1−s
4 ]. In order to calculate the Gibbs constants, we need

bounds on [gp,t]Λ−1 and [g̃p,t]Λ−1 which we obtain in the next lemma. For [g̃p,t]Λ−1

we’ll utilise properties of the fixed point hp,t of Lp,t, which we gathered in Lemma

4.4.8.

Lemma 4.5.1. Let p ∈ P0 and t ∈ [0, 1−s
4 ]. Then [gp,t]Λ−1 6 κΛl and [g̃p,t]Λ−1 6

3Λlaκ.

Proof. Since fp is locally constant,

[gp,t]Λ−1 = [−βp(t) log |T ′|]Λ−1 6 [log |T ′|]Λ−1 6 κΛl

by Lemma 3.1.3.

For the second part, notice that if x, y ∈ Ii1...in then

| log hp,t(x)− log hp,t(y)| =
∣∣∣∣log

hp,t(x)

hp,t(y)

∣∣∣∣ 6 a|x− y| 6 aΛl−1

Λn
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by Lemma 3.1.2. Therefore, [log hp,t]Λ−1 6 aΛl−1. Similarly, if x, y ∈ Ii1...in for

n > 2 then

| log hp,t(Tx)− log hp,t(Ty)| 6 aΛl−1

Λn−1
=
aΛl

Λn
.

If x, y ∈ Ii1 then

| log hp,t(Tx)− log hp,t(Ty)| 6 a 6
aΛl

Λ
.

Therefore [log hp,t ◦ T ]Λ−1 6 aΛl.

Combining these together, we obtain

[g̃p,t]Λ−1 6 [gp,t]Λ−1 + [log hp,t]Λ−1 + [log hp,t ◦ T ]Λ−1

6 κΛl + aΛl−1 + aΛl 6 3Λlaκ.

Now, by using the above properties of [g̃p,t]Λ−1 , we can obtain a uniform

upper bound on the Gibbs constants Cp,t which will hold for all p ∈ P0 and t ∈ [ δ2 , δ].

We do this by using properties of the (normalised) transfer operator, in particular,

the property that M∗p,t(µp,t) = µp,t.

Lemma 4.5.2. Let p ∈ P0 and t ∈ [0, 1−s
4 ]. Then for any n ∈ N, i1 . . . in ∈ Nnp and

z ∈ Ii1...in,

C−1 (pi1 · · · pin)t

|T ′(z) · · ·T ′(Tn−1z)|βp(t)
6 µp,t(Ii1...in) 6 C

(pi1 · · · pin)t

|T ′(z) · · ·T ′(Tn−1z)|βp(t)

where

C = exp

(
3Λlaκ

Λ− 1
+ a

)
. (4.28)

Proof. The proof of this lemma is based on arguments in [Bo]. Let n ∈ N and any

95



i1 . . . in ∈ Nnp. Then

µp,t(Ii2,...,in) =

∫
1Ii2,...,in (x)dµp,t(x)

=

∫ ∑
Tpy=x

1Ii1,i2,...,in (y)dµp,t(x)

=

∫ ∑
Tpy=x

eg̃p,t(y)1Ii1,...,in (y)e−g̃p,t(y)dµp,t(x)

=

∫
Mp,t(1Ii1,...,in (x)e−g̃p,t(x))dµp,t(x)

=

∫
Ii1,...,in

e−g̃p,t(x)dµp,t(x)

where the final line follows because M∗p,tµp,t = µp,t.

Let z ∈ Ii1...in . Then

µp,t(Ii2,...,in)eg̃p,t(z) 6 e
[g̃p,t]Λ−1

Λl µp,t(Ii1,...,in)

so that
µp,t(Ii1,...,in)

µp,t(Ii2,...,in)
e−g̃p,t(z) > e

−[g̃p,t]Λ−1
Λn .

Moreover, we can proceed to obtain the following sequence of inequalities

µp,t(Ii2,...,in)

µp,t(Ii3,...,in)
e−g̃p,t(Tz) > e

−[g̃p,t]Λ−1

Λn−1

...

µp,t(Iin)e−g̃p,t(T
n−1z) > e

−[g̃p,t]Λ−1
Λ .

Multiplying these all together we obtain

µp,t(Ii1,...,in)

eSng̃p,t(z)
> e−

[g̃p,t]Λ−1
Λ−1 . (4.29)
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Now,

Sn(log hp,t − log hp,t ◦ T )(z) = log hp,t(z)− log hp,t(Tz)

+ log hp,t(Tz)− log hp,t(T
2z)

...

+ log hp,t(T
n−1z)− log hp,t(T

nz)

= log
hp,t(z)

hp,t(Tnz)
> −a.

Plugging this into (4.29) we obtain

µp,t(Ii1,...,in)

eSngp,t(z)
> e−

[g̃p,t]Λ−1
Λ−1

−a > exp

(
−3Λlaκ

Λ− 1
− a
)
. (4.30)

By rearranging this inequality and expanding the ergodic sum we obtain the desired

lower bound. The upper bound follows by an analogous argument.

Next, we move onto the proof of Lemma 4.2.9. In particular, given i for which

Π(i) ∈ Z, we would like to calculate a lower bound on the measure of a cylinder

µp,t(Ii1...in) which depends only on ε and n.

Recall that τ was defined in (4.11) to be

τ = inf
x∈I1∪I2

1

|T ′(x)|
.

The proof of Lemma 4.2.9 is now a straightforward consequence of Lemma

4.5.2.

Proof of Lemma 4.2.9. Let t ∈ [0, 1−s
4 ], ε > 0 and p ∈ Pε. Let z = Π(i) ∈

{z1, z2, z12} and n ∈ N. Then

µp,t(Ii1,...,in) > C−1e−Sngp,t(z)

= C−1 (pi1 . . . pin)t

|T ′(z) · · ·T ′(Tn−1z)|βp(t)

> C−1εtnτn.
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4.6 Proof of Theorem 3.5.3

In this section we tie together Lemmas 4.2.7, 4.2.8 and 4.2.9 which were proved

in the last three sections to obtain a lower bound on the variance σ2
p,t(fp,t), and

consequently obtain upper bounds for supp∈Pε dimµp for every ε > 0.

Recall that in Section 4.1 we showed that |β′p(1)| = dimµp for each p ∈ P0.

The objective was to obtain a lower bound on β′′p(t) on a compact subset [ δ2 , δ] of t

in order to induce an upper bound on |β′p(1)|. In Sections 4.1 and 4.2 we saw that

for t ∈ [0, 1−s
4 ],

β′′p(t) =
σ2
p,t(fp,t)∫

log |T ′|dµp,t
=

∫
f̃2
p,tdµp,t∫

log |T ′|dµp,t
.

Suppose that ε > 0 and δ < 1−s
4 are fixed. We’ll begin by finding a lower

bound for σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t by following the blueprint provided by Lemma

4.2.6 along with Lemmas 4.2.7, 4.2.8 and 4.2.9. This will hold for all p ∈ Pε and

t ∈ [ δ2 , δ]. Next, as promised we’ll bound
∫

log |T ′|dµp,t from above (uniformly for

all p ∈ P0 and t ∈ [0, 1−s
4 ]. These two bounds combined together will give us a

lower bound for β′′p(t) that holds for all p ∈ Pε and t ∈ [ δ2 , δ]. Finally, this will allow

us to prove the main result of this chapter, Theorem 3.5.3: for every ε > 0 and

δ < 1−s
4 there exists some constant Gε,δ for which supp∈Pε dimµp < 1−Gε,δ. This

will precisely be the upper bound on |β′p(1)| which is yielded by estimating β′′p(t)

from below on the interval [ δ2 , δ].

We begin by getting a lower bound on the variance σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t.

Here we essentially follow the proof of Lemma 4.2.6, but instead of treating one

specific pair p, t, we use the uniform bounds on infz∈Z
1
2S2fp,t(z), [f̃p,t]Λ−1 and

infΠ(i)=z∈Z µp,t(Ii1...in) which are provided by Lemmas 4.2.7, 4.2.8 and 4.2.9 to get

uniform lower bounds on the variance for larger classes of p and t.

Lemma 4.6.1. Let ε > 0 and let p ∈ Pε, t ∈ [0, 1−s
4 ]. Let

m >
1

log Λ
log

(
2C0

δc

)
(4.31)

and c = θ
4

∣∣∣log T ′(z1)T ′(z2)
T ′(z12)T ′(z21)

∣∣∣ > 0 as in Lemma 4.2.7. Then

σ2
p,t(fp,t) =

∫
f̃2
p,tdµp,t >

c2

4
C−1εmtτm

where C is given by Lemma 4.5.2.
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Proof. Let p ∈ Pε. Let z be the periodic point given by Lemma 4.2.7 that satisfies

|1
2
S2(f̃p,t(z))| > c.

It follows that either |f̃p,t(z)| > c or |f̃p,t(T (z))| > c. Let i be the symbolic coding

for the point for which this holds. By Lemma 4.2.8, [f̃p,t]Λ−1 6 C0
δ and therefore for

m > 1
log Λ log(2C0

δc ) it follows that [f̃p,t]Λ−1 6 C0
δ 6 c

2Λm, that is, for all x ∈ Ii1,...,im ,

f̃p,t(x) > c
2 . Therefore by Lemma 4.2.9,∫

f̃2
p,tdµp,t >

c2

4
µp,t(Ii1,...,im)

>
c2

4
C−1εtmτm.

Next, we obtain an upper bound for the Lyapunov exponent
∫

log |T ′|dµp,t
which appears in the denominator of the expression for β′′p(t). Now that we have a

uniform upper bound on the Gibbs constants for µp,t, this result is straightforward.

Lemma 4.6.2. Let p ∈ P0, t ∈ [0, 1−s
4 ]. Then∫

log |T ′|dµp,t 6 L

where L = Ceqϑ is some uniform constant independent of p and t.

Proof. By Lemma 4.5.2 we have∫
log |T ′|dµp,t 6 C

∑
n∈Np

sup
x∈In

log |T ′(x)|
|T ′(x)|βp(t)

6 C
∑
n∈Np

log |T ′(x)|
|T ′(x)|

s+1
2

6 Ceqϑ = L. (4.32)

We are now ready to prove our main result of this chapter. The following

theorem is essentially a restatement of Theorem 3.5.3, this time including the details

about the exact form of Gε,δ.

Theorem 4.6.3. Let 0 < δ < 1−s
4 and ε > 0. Then

sup
p∈Pε

dimµp 6 1−Gε,δ (4.33)
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where

Gε,δ = ρ1δ
2ερ2δ(1−log δ)τρ2−log δ (4.34)

for some positive constants ρ1, ρ2 independent of ε and δ.

Proof. By Lemmas 4.6.1 and 4.6.2, for t ∈ [ δ2 , δ] and p ∈ Pε,

β′′p(t) > γε,δ :=
c2

4 C
−1εmδτm

L
.

Then it follows that

dimµp = −β′p(1) 6
βp(1−s

4 )

1− 1−s
4

=

∫ 1−s
4

0 β′p(t)dt+ 1

1− 1−s
4

6
1− 3

8δ
2γε,δ − 1−s

4 dimµp

1− 1−s
4

where the first inequality follows by convexity of βp. Therefore,

dimµp 6 1− 3

8
δ2γε,δ (4.35)

for all p ∈ Pε. Therefore,

dimµp 6 1− 3c2C−1εmδτm

32L
δ2

6 1− 3c2C−1

32L
δ2ε

( δ
log Λ

log(
2C0
cδ

))
τ

( 1
log Λ

log(
2C0
cδ

))

6 1− 3c2C−1

32L
δ2ε(log(δ

2C0
cδ

))τ (log(
2C0
cδ

))

6 1− 3c2C−1

32L
δ2ε(log

2C0
c

)δ(1−log δ)τ log(
2C0
c

)−log δ.

This yields (4.34) with ρ1 = 3c2C−1

32L and ρ2 = log 2C0
c .

Remark 4.6.4. Unfortunately, we quickly see that when T is the Gauss map, the

upper bound that Theorem 4.6.3 yields for dimµp will be worse than 1− 10−7 which

was the corresponding result in [KPW]. The reason for this is that the Rényi con-

stant for the Gauss map is κ = 16, which appears in several exponents, such as

C = exp

(
3Λlaκ

Λ− 1
+ a

)
.

Recall that in Lemma 3.5.4 we obtain a uniform upper bound for dimµp for

any p ∈ P0 where p1 is ‘close to 1’. The proof of this lemma appears in Appendix

B and contains similar arguments to the ones presented in this chapter.
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Chapter 5

Redistributing mass

In this chapter we introduce a ‘mass redistribution technique’ to compare Lyapunov

exponents of projected Bernoulli measures for EMR maps. Recall that in Chapter 3

we assumed for simplicity that T ′′ > 0, meaning that in the orientation preserving

case, I1 = (0, a) for some a ∈ (0, 1) and in the orientation reversing case I1 = (b, 1)

for some b ∈ (0, 1).

We introduce a partial ordering on the simplex P.

Definition 5.0.5. Let p,q ∈ P where p = (p1, p2, . . .) and q = (q1, q2, . . .). We

say that p can be obtained by ∗-transforming q if there exists some n > m and

ε < min{qn, 1− qm} such that p = (q1, . . . , qm + ε, . . . , qn − ε, . . .).
Then, we define a partial ordering ≺ on P by writing p ≺ q whenever p can

be obtained by ∗-transforming q finitely or countably many times.

We’d like to be able to compare the Lyapunov exponents χ(µp) and χ(µp∗)

whenever p � p∗. Comparing two integrals with respect to distinct measures is

generally quite difficult, especially when the measures are Bernoulli, since they have

a complicated structure once projected to [0, 1] under Π. Therefore we would like to

find a way to rewrite χ(µp)−χ(µp∗) as the integral of the difference of two distinct

functions, over a common measure. We will do this by constructing a new measure

ν which lives on a ‘larger’ space, and projects to µp and µp∗ under some projections

Π1 and Π2. In particular, this will allow us to verify that χ(µp) − χ(µp∗) > 0

whenever p � p∗ (although if it were required, we could also use this technique to

provide more quantitative information about the size of χ(µp) − χ(µp∗)). We will

present these arguments in Section 5.1.

We’ll use the arguments from Section 5.1 to help us complete the proof of

Theorem 3.3.1. In particular, we’ll use the fact that χ(µp) > χ(µp∗) whenever

p � p∗ in order to prove Theorems 3.5.5 and 3.5.6. Roughly speaking, to prove
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Theorem 3.5.5 we’ll show that there exists p∗ ∈ P0 for which p∗ ≺ p, so that

χ(µp∗) < χ(µp), and moreover, dimµp 6 dimµp∗ . Recall that ξ was introduced in

Section 3.5 to be some explicit constant 0 < ξ < 1 and is made precise in (B.1). To

prove Theorem 3.5.6, we’ll show that there exists some term Eε which depends only

on ε, such that for any p ∈ P0 \ Pε with p1 < ξ, we can find p∗ ∈ Pε with p∗ ≺ p

and

dimµp 6 dimµp∗ + Eε.

Finally, we’ll show that for some δ > 0 and ε > 0, Eε <
1
2Gε,δ, thus completing the

proof of Theorem 3.5.6.

5.1 Estimating χ(µp)− χ(µp∗)

In this section we study the difference χ(µp)− χ(µp∗) whenever p � p∗ by using a

‘mass redistribution technique’.

Let p = (p1, p2, . . .). For n < m and ε < min{pm, 1− pn} let

p∗ = (p1, p2, . . . , pn−1, pn + ε, pn+1, . . . , pm−1, pm − ε, pm+1, . . .).

Let µp, µp∗ be the usual pushforward Bernoulli measures on [0, 1]. Let Σ0 = ({0}∪
N)N, equipped with the full shift map σ0 : Σ0 → Σ0.

We define two projections Π1 : Σ0 → Σ and Π2 : Σ0 → Σ given by

Π1(x1x2 . . .) = y1y2 . . .

{
yk = xk if xk 6= 0

yk = n if xk = 0

Π2(x1x2 . . .) = y1y2 . . .

{
yk = xk if xk 6= 0

yk = m if xk = 0

Let ν be the Bernoulli measure on Σ0 associated to the probability vector (q0, q1, . . .) =

(ε, p1, . . . , pn, . . . , pm − ε, . . .). Clearly Π(Π1(ν)) = µp∗ and Π(Π2(ν)) = µp.

The above technique of writing distinct measures as projections of some

common measure is based on an idea of Anthony Quas which was communicated to

me by Mark Pollicott.

We are interested in χ(µp) − χ(µp∗). When the branches of T preserve

orientation, (T ′ > 0) this is easy to understand.

Lemma 5.1.1. Let T be an EMR map such that T ′ > 0. Let p, p∗, ν, Π1, Π2 be
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as above. Then

χ(µp)− χ(µp∗) =

∫
log

∣∣∣∣T ′(Π(Π2(i)))

T ′(Π(Π1(i)))

∣∣∣∣ dν(i) > 0.

Proof. Since the branches of T are orientation preserving,

Π ◦Π2(i) > Π ◦Π1(i)

for all i ∈ Σ0. Since T ′ is increasing it follows that∫
log |T ′ ◦Π ◦Π2|dν >

∫
log |T ′ ◦Π ◦Π1|dν.

But ν ◦Π−1
1 ◦Π−1 = µp∗ and ν ◦Π−1

2 ◦Π−1 = µp thus the result follows.

In the case that T ′ < 0, this is the precise point at which we utilise the fact

that the derivative of the second iterate of T is monotone in ‘level 1’ cylinders. This

allows us to obtain the following analogue of Lemma 5.1.1.

Lemma 5.1.2. Let T be an EMR map that is orientation reversing (T ′ < 0). Let

p, p∗, ν be as above. Then

χ(µp)− χ(µp∗) =∑
w∈Σ∗even

(∑
n∈N

∫
[nw0]

log

∣∣∣∣(T 2)′(Π(Π2(i)))

(T 2)′(Π(Π1(i)))

∣∣∣∣ dν(i) +

∫
[0w0]

log

∣∣∣∣T ′(T (Π(Π2(i))))

T ′(T (Π(Π1(i))))

∣∣∣∣ dν(i)

)
> 0

(5.1)

where Σ∗even denotes all finite words over the alphabet N of even length.

Proof. We define A,B ⊂ Σ0 to be the sets

A :=
{
i ∈ Σ0 : min

k
{ik = 0} is even

}
and

B :=
{

(i ∈ Σ0 : min
k
{ik = 0} is odd

}
.

Therefore

A =
⋃

w∈Σ∗odd

[w0]
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and

B =
⋃

w∈Σ∗even

[w0]

where Σ∗odd denotes all finite words over the alphabet N of odd length, Σ∗even denotes

all finite words over the alphabet N of even length. Note that by the Birkhoff ergodic

theorem, ν (Σ0 \A ∪B) = 0.

Observe that for i ∈ A, Π(Π1(i)) 6 Π(Π2(i)) and for i ∈ B, Π(Π2(i)) 6

Π(Π1(i)). Now,

χ(µp) =

∫
[0,1]

log |T ′|dµp =

∫
Σ

log |T ′ ◦Π|dΠ2(ν) =

∫
Σ0

log |T ′ ◦Π ◦Π2|dν

=

∫
A

log |T ′ ◦Π ◦Π2|dν +

∫
B

log |T ′ ◦Π ◦Π2|dν

and similarly

χ(µp∗) =

∫
[0,1]

log |T ′|dµp =

∫
Σ

log |T ′ ◦Π|dΠ1(ν) =

∫
Σ0

log |T ′ ◦Π ◦Π1|dν

=

∫
A

log |T ′ ◦Π ◦Π1|dν +

∫
B

log |T ′ ◦Π ◦Π1|dν.

Thus, we need to find

χ(µp)− χ(µp∗) =

∫
B

log

∣∣∣∣T ′ ◦Π ◦Π2

T ′ ◦Π ◦Π1

∣∣∣∣ dν − ∫
A

log

∣∣∣∣T ′ ◦Π ◦Π1

T ′ ◦Π ◦Π2

∣∣∣∣ dν
=

∑
w∈Σ∗even

(∫
[w0]

log

∣∣∣∣T ′ ◦Π ◦Π2

T ′ ◦Π ◦Π1

∣∣∣∣ dν − ∫⋃
n∈N[nw0]

log

∣∣∣∣T ′ ◦Π ◦Π1

T ′ ◦Π ◦Π2

∣∣∣∣ dν
)
.

Observe that both of the above integrals are positive since for x < y, |T ′(x)| >
|T ′(y)|. Fix w ∈ Σ∗even (where w can be the ‘null’ word). Then since ν is σ0

invariant,∫
[w0]

log

∣∣∣∣T ′ ◦Π ◦Π2

T ′ ◦Π ◦Π1

∣∣∣∣ dν =

∫
[w0]

log

∣∣∣∣T ′ ◦Π ◦Π2

T ′ ◦Π ◦Π1

∣∣∣∣ dν ◦ σ−1
0

=

∫
⋃
n∈N0

[nw0]
log

∣∣∣∣T ′ ◦Π ◦Π2 ◦ σ0

T ′ ◦Π ◦Π1 ◦ σ0

∣∣∣∣ dν
=

∫
⋃
n∈N0

[nw0]
log

∣∣∣∣T ′ ◦ T ◦Π ◦Π2

T ′ ◦ T ◦Π ◦Π1

∣∣∣∣ dν
where N0 = N∪{0} and the final line follows because Π1◦σ0 = σ◦Π1, Π2◦σ0 = σ◦Π2
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and Π ◦ σ = T ◦Π. It follows that

χ(µp)− χ(µp∗) =∑
w∈Σ∗even

(∑
n∈N

∫
[nw0]

log

∣∣∣∣(T 2)′(Π(Π2(i)))

(T 2)′(Π(Π1(i)))

∣∣∣∣ dν(i) +

∫
[0w0]

log

∣∣∣∣T ′(T (Π(Π2(i))))

T ′(T (Π(Π1(i))))

∣∣∣∣ dν(i)

)
.

(5.2)

The first term is positive by the assumption that (T 2)′(x) > (T 2)′(y) for any x, y ∈
In with x > y. The second term is positive since for all i ∈ [0w0], T (Π ◦ Π2(i)) 6

T (Π ◦Π1(i)) and so∫
[0w0]0

log |T ′ ◦ T ◦Π ◦Π2| − log |T ′ ◦ T ◦Π ◦Π1|dν > 0.

This gives us the following important result which allows us to compare

Lyapunov exponents via the partial ordering on probability vectors.

Corollary 5.1.3. Suppose T is an EMR map where T ′ is monotone. If p � p∗

then χ(µp) > χ(µp∗).

Remark 5.1.4. Since χ(µp) − χ(µp∗) can always be expressed as a sum of non-

negative terms, it is clear that better lower bounds should be available for the dif-

ference χ(µp)− χ(µp∗). Although 0 is a sufficient lower bound for our purposes, in

a recent joint work with Baker [BJ], positive lower bounds were used to study the

related problem of determining the existence of a Bernoulli measure with maximal

dimension amongst Bernoulli measures.

Also, we immediately obtain the following lower bound for the Lyapunov

exponent of any Bernoulli measure in the setting where T ′ < 0.

Corollary 5.1.5. Let p ∈ P and T be an EMR map from the setting of Theorem

3.3.1 such that T ′ < 0. Then χ(µp) > log |T ′(Π((1)∞))| > 0.

For example, this means that for any Bernoulli measure µp for the Gauss

map, χ(µp) > −2 log(φ− 1) where φ denotes the golden ratio.

5.2 Proofs of Theorems 3.5.5 and 3.5.6

In this section, we complete the proof of Theorem 3.3.1 by using the ideas from the

previous section. Recall that P0 was defined to be all p ∈ P such that
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(a) dimµp > 2s+2
s+3 .

(b) p has all strictly positive entries, possibly apart from a tail of zeroes. In other

words, pn 6= 0 unless pk = 0 for all k > n.

(c) pn
|In| is bounded in n.

Recall also that Pε = {p ∈ P0 : p1, p2 > ε}, P∗ = {p ∈ P0 : pn > 0 ∀n} and

P∞ =
⋃
n∈N Pn where Pn denoted the set of probability vectors which were fully

supported on the first n digits.

We will begin by proving Theorem 3.5.5, that

sup
p∈P\P0

dimµp 6 sup
p∈P0

dimµp.

The proof of this will involve various arguments whereby we move mass in such a

way that we obtain a measure µp∗ with p∗ ∈ P0, that is, whose dimension we do

know about, and such that p � p∗ so that χ(µp) > χ(µp∗). By combining this with

estimates on the change in entropy, we will be able to bound dimµp by dimµp∗ and

obtain the result. We will tackle this in Section 5.2.1.

After proving Theorem 3.5.5, this will allow us to restrict our attention to

obtaining a uniform estimate for supp∈P0:p1<ξ dimµp, that is, to the proof of Theo-

rem 3.5.6. Recall that by Theorem 3.5.3, we know that for sufficiently small ε and

δ,

sup
p∈Pε

dimµp < 1−Gε,δ.

In Section 5.2.2, we fix ε and construct an algorithm which will allow us to take

p ∈ P0\Pε with p1 < ξ, and output p∗ ∈ Pε where p � p∗ (so that χ(µp) > χ(µp∗))

and the entropy change is bounded. This will let us find the term Eε for which

sup
p∈P0\Pε:p1<ξ

dimµp 6 sup
p∈Pε

dimµp + Eε

and then finally choose ε, δ > 0 for which Eε <
1
2Gε,δ, thus completing the proof.

5.2.1 Proof of Theorem 3.5.5

In this section we prove Theorem 3.5.5, that is, we show that

sup
p∈P\P0

dimµp 6 sup
p∈P0

dimµp.
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If p /∈ P0 then either (a), (b) or (c) of Definition 3.5.1 is not satisfied. If (a) is

not satisfied, then trivially dimµp 6 2s+2
s+3 < supp∈P0

dimµp by definition of P0.

Therefore it suffices to prove that if either p ∈ P \ (P∗∪P∞) or if pn
|In| is unbounded

in n, then

dimµp 6 sup
p∈P0

dimµp.

We’ll treat each of these cases separately, beginning with the assumption that p ∈
P \ (P∗ ∪ P∞).

Suppose p ∈ P \ (P∗ ∪ P∞). We define p∗ to be the unique p∗ ∈ P∗ ∪
P∞ which can be obtained from p by replacing any finite string of zeroes in p by

redistributing the mass from the next non-zero entry uniformly over the preceding

zero entries and itself. For example, given

p = (p1, p2, 0, 0, p5, 0, p7, p8, . . .)

where all of the terms are non-zero unless explicitly stated, then

p∗ = (p1, p2,
p5

3
,
p5

3
,
p5

3
,
p7

2
,
p7

2
, p8, . . .).

The following lemma describes the change in entropy.

Lemma 5.2.1. Let p ∈ P \ (P∗ ∪ P∞). Define p∗ ∈ P∗ ∪ P∞ as described above.

Then h(µp) 6 h(µp∗).

Proof. Without loss of generality, we can assume that all entries are non-zero apart

from one string of zeros (and possibly a tail of zeroes). Let’s say

p = (p1, p2, . . . , pn, 0, . . . , 0, pn+m, pn+m+1, . . .)

where entries (except possibly the tail) are all non-zero unless stated explicitly oth-

erwise. Then we obtain p∗ to be

p∗ = (p1, p2, . . . , pn,
pn+m

m
,
pn+m

m
, . . . ,

pn+m

m
, pn+m+1, . . .).

Then

h(µp)− h(µp∗) = −pn+m log pn+m +m · pn+m

m
log

pn+m

m

= −pn+m log pn+m + pn+m log
pn+m

m
= −pn+m logm 6 0.

107



The result follows.

Using Corollary 5.1.3 and Lemma 5.2.1 we immediately see that we can deal

with the case where p /∈ P∗ ∪ P∞.

Lemma 5.2.2. Suppose p /∈ P∗ ∪ P∞. Then there exists p∗ ∈ P∗ ∪ P∞ for which

dimµp 6 dimµp∗.

Proof. Let p ∈ P \ (P∗ ∪P∞). Then using Lemma 5.2.1 we can find p∗ ∈ P∗ ∪P∞

such that p∗ ≺ p and h(µp) 6 h(µp∗). Therefore by Corollary 5.1.3

dimµp =
h(µp)

χ(µp)
6
h(µp∗)

χ(µp∗)
= dimµp∗ .

Next, we need to consider p where the weights pn are decaying at a slower

rate than |In|. The following lemma provides the appropriate upper bound for

dimµp.

Lemma 5.2.3. Suppose pn
|In| is unbounded and p ∈ P∗ ∪ P∞. Then

dimµp 6 sup
q∈P0

dimµq.

Proof. Suppose p = (p1, p2, . . .) is such that p ∈ P∗ ∪ P∞. The main point of this

lemma is to show that we can approximate the dimension of µp arbitrarily well by

the dimension of a finitely supported measure µp∗ (so that p∗ trivially satisfies the

hypothesis that p∗n
|In| is bounded and therefore p∗ ∈ P0). A consequence of this is

that even if pn
|In| is not bounded then dimµp 6 supq∈P0

dimµq as required. Denote

ς = sup
q∈P0

dimµq.

Let α > 0 be arbitrary and fix δ < ςαφp where φp = (1−p1) inf{log |T ′(x)| : x ∈ I2}.
Fix ε > 0 sufficiently small so that −ε log ε < δ and N sufficiently large that

−
∑∞

n=N pn log pn < δ and
∑∞

n=N pn < ε. Now define

p∗ =

(
p1, p2, . . . , pN−1,

∞∑
n=N

pn, 0, 0, . . .

)
.

Then since (b) and (c) of Definition 3.5.1 are satisfied, either dimµp∗ 6 2s+2
s+3 (that

is, (a) fails) or p∗ ∈ P0. Notice that
φp

χ(µp∗ ) < 1. Clearly |h(µp) − h(µp∗)| < δ and
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by Corollary 5.1.3, χ(µp) > χ(µp∗). It follows that

dim(µp) 6
h(µp)

χ(µp)
6
h(µp∗) + δ

χ(µp∗)
6 (1 + α)ς.

Since α > 0 was arbitrary, the result follows.

Finally, by combining Lemmas 5.2.2 and 5.2.3 we can prove Theorem 3.5.5.

Proof of Theorem 3.5.5. Suppose p /∈ P0. We want to show that

sup
p∈P\P0

dimµp 6 sup
p∈P0

dimµp.

Recall that for p ∈ P0 then (a), (b), (c) of Definition 3.5.1 must be satisfied.

Suppose p does not satisfy (a). Then dimµp 6 2s+2
s+3 < supp∈P0

dimµp and we are

done.

Suppose p does not satisfy (b). Then by Lemma 5.2.2 there exists p∗ ∈
P∗ ∪P∞ such that dimµp 6 dimµp∗ . If p∗ does not satisfy (a), we are done. If p∗

does not satisfy (c), by Lemma 5.2.3 we are done. Otherwise, p∗ satisfies (a), (b),

and (c) and so p∗ ∈ P0 and so we are done.

Suppose p does not satisfy (c). If p does not satisfy (a) or (b) then by the

arguments above, we are done. Otherwise, by Lemma 5.2.3 we are also done.

5.2.2 Proof of Theorem 3.5.6

In this section, we prove Theorem 3.5.6 and thus conclude the proof of Theorem

3.3.1. Recall that ξ was introduced in Section 3.5 to be some explicit constant

ξ ∈ (0, 1) and is made precise in (B.1). In this section, we will prove that there

exists δ < 1−s
4 and some ε > 0 such that

sup
p∈P0\Pε:p1<ξ

dimµp < 1− 1

2
Gε,δ.

Therefore, throughout this section we will fix arbitrary ε > 0 and consider p ∈ P0\Pε
with p1 < ξ, that is, some p for which either p1 < ε or p2 < ε (or both), with the

restriction that p1 must be smaller than ξ. The goal will be to find some term Eε,

which depends only on ε, such that for any p ∈ P0 \ Pε with p1 < ξ, there exists a

p∗ ∈ Pε such that

dimµp 6 dimµp∗ + Eε.
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The idea would then be to choose some 0 < δ < 1−s
4 and ε > 0 such that Eε <

1
2Gε,δ.

From here it would follow that dimµp 6 1 − 1
2Gε,δ, thus completing the proof of

Theorem 3.5.6.

We will begin by describing a general algorithm which allows us to input some

probability vector p which satisfies some hypothesis, and produce some p∗ ≺ p

where a chosen co-ordinate in the new probability vector will now be uniformly

bounded below by some chosen ε. Since p∗ ≺ p, by Corollary 5.1.3 we know that

χ(µp) > χ(µp∗). Moreover, we will be able to get a uniform bound on the entropy

change h(µp)− h(µp∗) that occurs after applying the algorithm to p. The entropy

change will be dependent on ε and on how sparsely the mass in µp is distributed.

Next, we’ll investigate the implications of the general results described above

to the particular setting where p ∈ P0 \ Pε. In particular, we’ll find some term Eε

such that given p ∈ P0 \ Pε with p1 < ξ, we can find p∗ (by an application of the

algorithm) for which

dimµp 6 dimµp∗ + Eε.

The choice of candidate p∗ for p will depend on the specific details about

the weights pn, for instance, whether only one or both of p1 and p2 is less than ε.

To this end, we will separate the general scenario that p /∈ Pε into five cases, and

in each we will apply the algorithm slightly differently. Consequently, we’ll show

that there exists a uniform λ > 0 such that for each p we can produce p∗ ∈ Pε with

dimµp 6 dimµp∗ + λ(ε − ε log ε) (so Eε = λ(ε − ε log ε)). Finally, by combining

this with the exact form of Gε,δ provided by Theorem 4.6.3, we can prove that there

exists δ, ε > 0 with Eε <
1
2Gε,δ, concluding the proof of Theorem 3.5.6.

An algorithm

We begin by describing a general algorithm which, given some chosen ε > 0 and

some probability vector p that satisfies a hypothesis about the distribution of mass

amongst its weights pn, allows one to produce p∗ ≺ p where a chosen co-ordinate

p∗k of the new probability vector satisfies p∗k > ε. In order for the algorithm to be

well defined, we need to make some assumptions on the weights of p. For instance,

the chosen weight pk of the old probability vector should satisfy pk < ε, and there

should be enough mass amongst the weights ‘further down’ the probability vector

p to make it possible to ∗-transform it and obtain a suitable p∗. The hypothesis

below makes this precise.

Hypothesis 5.2.4. Fix ε > 0 and 1 6 k 6 m. We say that µp satisfies the (ε, k,m)

hypothesis if pk < ε and
∑∞

n=m+1 pn > 3ε.
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So the (ε, k,m) hypothesis basically ensures that some weight pk < ε and

that we can ‘correct this’ by redistributing mass from the digits (pn)n>m+1.

Suppose p satisfies the (ε, k,m) hypothesis. Then the (ε, k,m) algorithm is

as follows. We start with p and n = m+ 1.

1. Move min{pn2 , ε} mass from the nth co-ordinate to the kth co-ordinate.

2. Replace p with the output of 1.

3. If pk > ε then stop.

4. If pk < ε then replace n with n+ 1 and return to 1.

We denote the final probability vector that we are left with once the algorithm stops

by p∗.

We define N ∈ N to be the first integer for which

pk +
m+N∑
n=m+1

min
{pn

2
, ε
}

> ε. (5.3)

Then N is just the number of weights that we move mass from before we stop the

algorithm, or alternatively the number of times we repeat the algorithm. We call N

the stopping time. By construction

ε 6 pk +

m+N∑
n=m+1

min
{pn

2
, ε
}

= pk +

m+N−1∑
n=m+1

pn
2

+ min
{pm+N

2
, ε
}
6 2ε.

Then we can write p∗ explicitly as

p∗ =

(
p1, . . . , pk−1, pk +

m+N−1∑
n=m+1

pn
2

+ min
{pm+N

2
, ε
}
, pk+1, . . . , pm,

pm+1

2
,

. . . ,
pm+N−1

2
, pm+N −min

{pm+N

2
, ε
}
, pm+N+1, . . .

)
. (5.4)

Observe that p∗ is well-defined, i.e. the algorithm will stop, because by

assumption
∑∞

n=m+1 pn > 3ε. Thus the reason we required that
∑∞

n=m+1 pn > 3ε

rather than just
∑∞

n=m+1 pn > ε is because in order avoid some of the entries of p∗

being 0, we only move at most half of each weights mass at a time. Also observe

that the algorithm uniquely chooses p∗. Finally observe that p∗ ≺ p.

In practise, we will consider p that satisfy Hypothesis 5.2.4 for the cases

where k = 1, 2, that is, p1 < ε or p2 < ε and m = k, k + 1, that is, we start taking

mass either from the next co-ordinate or the one after (depending on the setting).
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The following lemma gives a bound on the change in entropy that might occur

when applying the algorithm to some p which satisfies the (ε, k,m) hypothesis.

Lemma 5.2.5. Let p satisfy the (ε, k,m) hypothesis. Apply the algorithm to obtain

p∗ and let N be the stopping time for the algorithm, i.e. such that (5.3) is first

satisfied. Then h(µp)− h(µp∗) 6 6ε log(N + 1)− 8ε log ε.

Proof. Suppose
pm+N

2 6 ε. Then

|h(µp)− h(µp∗)| =
∣∣∣∣pk log pk + pm+1 log pm+1 + . . . pm+N log pm+N

− 1

2
(2pk + pm+1 + . . . pm+N ) log

1

2
(2pk + pm+1 + . . . pm+N )

− 1

2
pm+1 log

1

2
pm+1 − . . .−

1

2
pm+N log

1

2
pm+N

∣∣∣∣
=

∣∣∣∣log ppkk p
pm+1

m+1 . . . p
pm+N

m+N

− log

(
1

2
(2pk + pm+1 + . . . pm+N )

) 1
2

(2pk+pm+1+...pm+N )

− log

(
1

2
pm+1

) 1
2
pm+1

. . .

(
1

2
pm+N

) 1
2
pm+N

∣∣∣∣.
First we consider the first term. Let S denote the sum

S = pk + pm+1 + . . .+ pm+N 6 4ε.

Then

− log ppkk p
pm+1

m+1 . . . p
pm+N

m+N 6 − log

(
S

N + 1

) S
N+1
·(N+1)

= − log

(
S

N + 1

)S
6 − log

(
4ε

N + 1

)4ε

6 4ε log(N + 1)− 4ε log ε

where the first line follows because entropy is maximised when weight is distributed

uniformly.

Similarly, for the third term, observe that since 1
2(2pk+pm+1+. . . pm+N ) 6 2ε

then,
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− log

(
1

2
pm+1

) 1
2
pm+1

. . .

(
1

2
pm+N

) 1
2
pm+N

6 2ε log(N)− 2ε log ε.

Finally we consider the second term. Observe that since the derivative of xx

is (1 + log x)xx it follows that for x < e−1, xx is monotonically increasing to 1 as

x→ 0. That is, log xx monotonically increases to 0 as x→ 0.

Thus, it follows that since 1
2(2pk + pm+1 + . . . pm+N ) < 2ε,

− log

(
1

2
(2pk + pm+1 + . . . pm+N )

) 1
2

(2pk+pm+1+...pm+N )

6 − log(2ε)2ε 6 −2ε log ε.

Thus we get

|h(µp)− h(µp∗)| 6 6ε log(N + 1)− 8ε log ε.

Now for the other case suppose that pm+N > ε. Then

|h(µp)− h(µp∗)| =∣∣∣∣pk log pk + pm+1 log pm+1 + . . . pm+N log pm+N

− (
1

2
(2pk + pm+1 + . . . pm+N−1) + ε) log(

1

2
(2pk + pm+1 + . . . pm+N−1) + ε)

− 1

2
pm+1 log

1

2
pm+1 − . . .−

1

2
pm+N−1 log

1

2
pm+N−1 − (pm+N − ε) log(pm+N − ε)

∣∣∣∣
=

∣∣∣∣log ppkk p
pm+1

m+1 . . . p
pm+N−1

m+N−1

− log(
1

2
(2pk + pm+1 + . . . pm+N−1) + ε)

1
2

(2pk+pm+1+...pm+N−1)+ε

− log(
1

2
pm+1)

1
2
pm+1 . . . (

1

2
pm+N−1)

1
2
pm+N−1 + log

p
pm+N

m+N

(pm+N − ε)pm+N−ε

∣∣∣∣.
Similarly to before, since pk + pm+1 + . . .+ pm+N−1 < 2ε it follows that the

first term satisfies

− log ppkk p
pm+1

m+1 . . . p
pm+N−1

m+N−1 6 2ε log(N)− 2ε log ε.

The second term satisfies

− log

(
1

2
(2pk + pm+1 + . . . pm+N−1) + ε

) 1
2

(2pk+pm+1+...pm+N−1)+ε

6 −2ε log ε.
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The third term satisfies

− log(
1

2
pm+1)

1
2
pm+1 . . . (

1

2
pm+N−1)

1
2
pm+N−1 6 ε log(N − 1)− ε log ε.

For the final term observe that xx

(x−ε)x−ε is increasing on (ε, 1] since it has derivative

xx(x− ε)x−ε log x
x−ε

(x− ε)2(x−ε) > 0

therefore

0 > log
p
pm+N

m+N

(pm+N − ε)pm+N−ε
> ε log ε.

Therefore,

h(µp) 6 h(µp∗) + 3ε log(N)− 6ε log ε.

We are now ready to apply the more general ideas above to our specific case

of interest: the case when p /∈ Pε. It is easy to see that we will not be able to apply

the algorithm in a unanimous way, since the distribution of mass may vary e.g. for

some p we may need to increase both the first and second weights, for others only

the first or the second. Therefore, it will be necessary to split up the next part of

this section into four separate cases: firstly where both p1, p2 < ε, secondly where

p1 < ε, p2 > 2ε, thirdly where p1 < ε, ε < p2 6 2ε, and finally where ε 6 p1 < ξ,

p2 < ε < 1−ξ
4 . In each case, p will satisfy a slightly different variation of the

hypothesis, and thus we shall apply the algorithm slightly differently.

Case 1: p1, p2 < ε

Let p = (p1, p2, . . .) ∈ P0 \ Pε be such that p1, p2 < ε. We can see that p satisfies

the (ε, 1, 2) hypothesis since p1 < ε and
∑∞

n=3 pn > 1−2ε > 3ε. Thus, we can apply

the algorithm (with k = 1, m = 2) and obtain p′. Let N1 denote the stopping time

for this algorithm, that is, the first time N1 that

p1 +

2+N1∑
n=3

min
{pn

2
, ε
}
> ε.

Observe that p′1 > ε and p′2 < ε. Therefore p′ satisfies the (ε, 2, N1 + 1) hypothesis,

and we can apply the algorithm again to obtain p∗. Let N2 denote the stopping

114



time for this application of the algorithm, that is, the first time that

p2 +

N1+N2+1∑
n=N1+2

min
{pn

2
, ε
}
> ε.

Observe that p∗1, p
∗
2 > ε so either p∗ ∈ Pε or dimµp 6 2s+2

s+3 . Also observe that

p∗ � p′ � p, so by Corollary 5.1.3, dimµp > dimµp∗ .

By Lemma 5.2.5

h(µp)− h(µp′) 6 6ε log(N1 + 1)− 8ε log ε

and also

h(µp′)− h(µp∗) 6 6ε log(N2 + 1)− 8ε log ε.

Combining these two, we deduce that

h(µp)− h(µp∗) 6 12ε log(N1 +N2 + 1)− 16ε log ε.

Also, since p1 + 1
2p3 + · · · 1

2pN1+1 < ε this implies that

p1 + p3 + · · · pN1+1 < 2ε

and similarly, since p2 + 1
4pN1+2 + 1

2pN1+3 + · · · 1
2pN1+N2 < ε, then

p2 + pN1+2 + pN1+3 + · · · pN1+N2 < 4ε.

Combining the two inequalities above, we deduce that
∑

n=N1+N2+1 pn > 1−6ε and

therefore
∑

n=N1+N2+1 p
∗
n > 1 − 7ε, that is, µp∗ supports at least 1 − 7ε mass on⋃

n=N1+N2+1 In.

The information about the change in entropy and Lyapunov exponent and

distribution of mass in µp∗ allows us to get an upper bound on the dimension of µp

in terms of dimµp∗ and ε.

Lemma 5.2.6. Let p ∈ P0 \ Pε be such that p1, p2 < ε, and use the notation given

above. Then there exists a uniform constant λ1 > 0 such that

dimµp 6 dimµp∗ + λ1(ε− ε log ε).

Proof. Using the notation given above, by applying Corollary 5.1.3 and the above
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estimate for the entropy change,

dimµp 6
h(µp∗) + 12ε log(N1 +N2 + 1)− 16ε log ε

χ(µp∗)

6 dimµp∗ +
12ε log(N1 +N2 + 1)− 16ε log ε

(1− 7ε) inf{|T ′(x)| : x ∈ IN1+N2+1}
.

The result follows because logN
infx∈IN log |T ′(x)| is uniformly bounded (which itself is true

because |In| are polynomially decaying).

Case 2: p1 < ε, p2 > 2ε

Let p = (p1, p2, . . .) ∈ P0 \ Pε be such that p1 < ε and p2 > 2ε. We can see that p

satisfies the (ε, 1, 1) hypothesis since p1 < ε and
∑∞

n=2 pn > 1 − ε > 3ε. Thus, we

can apply the algorithm (with k = m = 1) and obtain p∗. Clearly the stopping time

N = 1. Observe that p∗1, p
∗
2 > ε so either p∗ ∈ Pε or dimµp 6 2s+2

s+3 . Also observe

that p∗ � p, so by Corollary 5.1.3, dimµp > dimµp∗ .

By Lemma 5.2.5

h(µp)− h(µp∗) 6 6ε log(N + 1)− 8ε log ε.

Also, since p∗1 < 2ε,
∑

n=2 p
∗
n > 1− 2ε, that is, µp∗ supports at least 1− 2ε

mass on
⋃
n=2 In.

The information about the change in entropy and Lyapunov exponent and

distribution of mass in µp∗ allows us to get an upper bound on the dimension of µp

in terms of dimµp∗ and ε.

Lemma 5.2.7. Let p ∈ P0 \ Pε be such that p1 < ε and p2 > 2ε, and use the

notation given above. Then there exists a uniform constant λ2 > 0 such that

dimµp 6 dimµp∗ + λ2(ε− ε log ε).

Proof. Using the notation given above, by applying Corollary 5.1.3 and the above

estimate for the entropy change,

dimµp 6
h(µp∗) + 6ε log(2)− 8ε log ε

χ(µp∗)

6 dimµp∗ +
6ε log(2)− 8ε log ε

(1− 2ε) inf{|T ′(x)| : x ∈ I2}
.

The result follows because logN
infx∈IN log |T ′(x)| is uniformly bounded (which itself is true
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because |In| are polynomially decaying).

Case 3: p1 < ε, ε 6 p2 < 2ε

Let p = (p1, p2, . . .) ∈ P0 \Pε be such that p1 < ε and ε 6 p2 < 2ε. We can see that

p satisfies the (ε, 1, 2) hypothesis since p1 < ε and
∑∞

n=3 pn > 1 − 3ε > 3ε. Thus,

we can apply the algorithm (with k = 1, m = 2) and obtain p∗. Let N denote the

stopping time for this algorithm, that is, the first time N that

p1 +
2+N∑
n=3

min
{pn

2
, ε
}
> ε.

Observe that p∗1, p
∗
2 > ε so either p∗ ∈ Pε or dimµp 6 2s+2

s+3 . Also observe

that p∗ � p, so by Corollary 5.1.3, dimµp > dimµp∗ .

By Lemma 5.2.5

h(µp)− h(µp∗) 6 6ε log(N + 1)− 8ε log ε.

Also, since p1 + 1
2p3 + · · · 1

2pN+1 < ε this implies that

p1 + p3 + · · · pN+1 < 2ε.

We deduce that
∑

n=N+2 pn > 1 − 4ε and therefore
∑

n=N+2 p
∗
n > 1 − 5ε, that is,

µp∗ supports at least 1− 5ε mass on
⋃
n=N+2 In.

The information about the change in entropy and Lyapunov exponent and

distribution of mass in µp∗ allows us to get an upper bound on the dimension of µp

in terms of dimµp∗ and ε.

Lemma 5.2.8. Let p ∈ P0 \ Pε be such that p1 < ε and ε 6 p2 < 2ε, and use the

notation given above. Then there exists a uniform constant λ3 > 0 such that

dimµp 6 dimµp∗ + λ3(ε− ε log ε).

Proof. Using the notation given above, by applying Corollary 5.1.3 and the above

estimate for the entropy change,

dimµp 6
h(µp∗) + 6ε log(N + 1)− 8ε log ε

χ(µp∗)

6 dimµp∗ +
6ε log(N + 1)− 8ε log ε

(1− 5ε) inf{|T ′(x)| : x ∈ IN+2}
.
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The result follows because logN
infx∈IN log |T ′(x)| is uniformly bounded (which itself is true

because |In| are polynomially decaying).

Case 4: ε 6 p1 < ξ, p2 < ε < 1−ξ
4

Let p = (p1, p2, . . .) ∈ P0 \ Pε be such that ε 6 p1 < ξ, p2 < ε < 1−ξ
4 . We can see

that p satisfies the (ε, 2, 2) hypothesis since p2 < ε and
∑∞

n=3 pn > 1− ξ − ε > 3ε.

Thus, we can apply the algorithm (with k = m = 2) and obtain p∗. Let N denote

the stopping time for this algorithm, that is, the first time N that

p2 +

2+N∑
n=3

min
{pn

2
, ε
}
> ε.

Observe that p∗1, p
∗
2 > ε so either p∗ ∈ Pε or dimµp 6 2s+2

s+3 . Also observe

that p∗ � p, so by Corollary 5.1.3, χ(µp) > χ(µp∗).

By Lemma 5.2.5

h(µp)− h(µp∗) 6 6ε log(N + 1)− 8ε log ε.

Also, since p2 + 1
2p3 + · · · 1

2pN+1 < ε this implies that

p2 + p3 + · · · pN+1 < 2ε.

We deduce that
∑

n=N+2 pn > 1 − ξ − 2ε and therefore
∑

n=N+2 p
∗
n > 1 − ξ − 3ε,

that is, µp∗ supports at least 1− ξ − 3ε mass on
⋃∞
n=N+2 In.

The information about the change in entropy and Lyapunov exponent and

distribution of mass in µp∗ allows us to get an upper bound on the dimension of µp

in terms of dimµp∗ and ε.

Lemma 5.2.9. Let p ∈ P0 \ Pε be such that ε 6 p1 < 1 − ξ, p2 < ε, and use the

notation given above. Then there exists a uniform constant λ4 > 0 such that

dimµp 6 dimµp∗ + λ4(ε− ε log ε).

Proof. Using the notation given above, by applying Corollary 5.1.3 and the above

estimate for the entropy change,

dimµp 6
h(µp∗) + 6ε log(N + 1)− 8ε log ε

χ(µp∗)

6 dimµp∗ +
6ε log(N + 1)− 8ε log ε

(1− ξ − 3ε) inf{|T ′(x)| : x ∈ IN+2}
.
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The result follows because logN
infx∈IN log |T ′(x)| is uniformly bounded (which itself is true

because |In| are polynomially decaying).

By combining Lemmas 5.2.6, 5.2.7, 5.2.8 and 5.2.9 we immediately obtain

the following corollary which provides us with the exact form of Eε.

Corollary 5.2.10. There exists a uniform constant λ > 0 independent of ε such

that,

sup
p∈P0\Pε:p1<ξ

dimµp 6 sup
p∈Pε

dimµp + λ(ε− ε log ε).

Proof. This follows directly from the above.

Using Corollary 5.2.10 we can complete the proof of Theorem 3.5.6, that is,

find ε, δ > 0 for which Eε <
1
2Gε,δ and so supp∈P0\Pε:p1<ξ dimµp 6 1− 1

2Gε,δ.

Proof of Theorem 3.5.6. Fix δ sufficiently small so that δ(1− log δ) < 1
ρ2

. We need

to show that for some 0 < ε < 1−ξ
4 we have

1−Gε,δ + λ(ε− ε log ε) < 1.

It is enough to show that for our choice of δ > 0,

lim
ε→0

λ(ε− ε log ε)

Gε,δ
= 0.

Substituting in for Gε,δ we see that we need to prove that

lim
ε→0

λ(ε− ε log ε)

ρ1δ2ερ2δ(1−log δ)τρ2−log δ
= 0.

It is enough to show that

lim
ε→0

1− log ε

ερ2δ(1−log δ)−1
= 0 (5.5)

which is the case whenever ρ2δ(1− log δ)− 1 < 0, that is, δ(1− log δ) < 1
ρ2

.

Now, fix 0 < ε0 <
1−ξ

4 sufficiently small so that

λ(ε0 − ε0 log ε0) <
1

2
Gε0,δ.

Then we have that

sup
p∈P0\Pε:p1<ξ

dimµp 6 1− 1

2
Gε0,δ
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and so the result follows.
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Chapter 6

Dimension of equilibrium

measures

6.1 Introduction

Let {Si}ni=1 be a self-affine IFS on Rd with attractor Λ. In particular, recall that

this means each of the maps Si = Ai + ti where Ai are d × d contracting non-

singular matrices and ti ∈ Rd are translations. See Section 2.4.3 for an introduction

to self-affine sets. Let Σ be the full shift on n symbols and Π : Σ → Rd be the

canonical coding map. Recall that, given a measure m on Σ, we can define a

measure µ = m ◦Π−1 on the self-affine set Λ.

In recent years, there has been considerable interest in studying the dimen-

sion of measures which are supported on self-affine sets. The analogue of this prob-

lem is well understood in the self-similar case. In particular, Feng and Hu [FH]

proved the following very general result.

Theorem 6.1.1. Let {Si}ni=1 be a C1 IFS on X ⊂ Rd (that is, each map Si extends

to a contracting C1 diffeomorphism Si : U → Si(U) ⊂ U for some open set U ⊃ X).

Let m be an ergodic measure on Σ and µ = m ◦ Π−1. If χ1(µ) = χd(µ) then µ is

exact dimensional and dimµ = h(µ)
χ1(µ) .

Since α1(i|n) = αd(i|n) for all i ∈ Σ whenever we are working with a self-

similar IFS, the above result tells us that the projection µ = m ◦Π−1 of any ergodic

measure m to a self-similar set is exact dimensional. More generally, it also tells us

that if we have a self-affine system and ergodic (projected) measure where all of the

Lyapunov exponents coincide, then that measure is also exact dimensional.

Once we move to the more general self-affine setting, the problem of determin-

ing the dimension of a measure becomes significantly more challenging. Essentially,
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this is down to the fact that the different contraction ratios in different directions

makes the geometry of a self-affine attractor considerably more difficult to analyse.

The ‘Ledrappier-Young formula’ refers to a dimension formula originating

with [LY1; LY2], which gives the exact dimension of a measure in a non-conformal

setting in terms of entropy, Lyapunov exponents and dimensions of projected mea-

sures. The measures originally considered by Ledrappier and Young were invariant

measures for C2 diffeomorphisms, but the formula has shown up in various contexts

since their original work. One of the contexts where this formula has cropped up is

in the study of measures supported on self-affine sets.

Recall that we say that a measure µ is a self-affine measure if for some self-

affine IFS {Si}ni=1 with coding map Π : Σ→ Rd, there exists some Bernoulli measure

m on Σ such that µ = m ◦Π−1. In some sense, a self-affine measure is the simplest

and most natural measure which a self-affine set Λ can support. However, it was not

until [BK] that the problem of determining the exact-dimensionality of self-affine

measures was resolved. Note that in the following results, to avoid introducing

unnecessary notation we will not give the exact form for the Ledrappier-Young

formula, since the expressions would be more complicated than the expression that

we will be dealing with. In [BK], Bárány and Käenmäki proved the following result.

Theorem 6.1.2. Let µ = m ◦ Π−1 be a self-affine measure corresponding to the

self-affine IFS {Si}ni=1 on Rd. If the Lyapunov exponents of µ are all distinct, that

is,

0 < χ1(µ) < · · · < χd(µ) < 1

then µ is exact-dimensional and satisfies (the appropriate version of) the Ledrappier-

Young formula.

In the general Rd setting, the result of Bárány and Käenmäki leaves ques-

tions unanswered, such as how things stand when two Lyapunov exponents are not

distinct. However, if we take d = 2 and combine their theorem with Theorem

6.1.1, then at least in the planar case we can verify the exact dimensionality of any

self-affine measure.

Corollary 6.1.3. Let µ = m◦Π−1 be a self-affine measure corresponding to the self-

affine IFS {Si}ni=1 on R2. Then µ is exact dimensional and satisfies (the appropriate

version of) the Ledrappier-Young formula.

Proof. By Theorem 6.1.1, if χ1(µ) = χ2(µ) then µ is exact-dimensional. The case

where χ1(µ) < χ2(µ) follows from Theorem 6.1.2.
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Another direction is to consider more general measures supported on self-

affine sets. In [BK], Bárány and Käenmäki also considered quasi-Bernoulli measures,

under some assumptions on the IFS. Before we state their result, we introduce the

Totally Dominated Splitting condition, which is used in their result.

Definition 6.1.4. Let {Si}ni=1 = {Ai + ti}ni=1 be a self-affine system in Rd. We say

that the d× d matrices {Ai}ni=1 satisfy the Totally Dominated Splitting condition if

there exist constants C > 1 and 0 < λ < 1 such that for each r ∈ {1, . . . , d − 1}
either

αr+1(Ai|n)

αr(Ai|n)
6 Cλn (6.1)

for all i ∈ Σ and n ∈ N or

C−1 6
αr+1(Ai|n)

αr(Ai|n)
(6.2)

for all i ∈ Σ and n ∈ N.

Essentially, the totally dominated splitting condition ensures that neighbour-

ing singular values are either ‘exponentially separated’ from one another or essen-

tially equal. Observe that for any ergodic measure m on Σ, the totally dominated

splitting condition implies that for each r ∈ {1, . . . , d} either χr(m) = χr+1(m) or

χr(m) < χr(m)− log λ 6 χr+1(m).

Under this condition, Bárány and Käenmäki [BK] proved an analogue of

Theorem 6.1.2.

Theorem 6.1.5. Let µ be a quasi-Bernoulli measure for a self-affine IFS {Si}ni=1

where the matrices {Ai} satisfy the Totally Dominated Splitting condition. Then µ

is exact dimensional and satisfies (the appropriate version of) the Ledrappier-Young

formula.

In this chapter, we consider a natural class of measures which are not quasi-

Bernoulli, and prove that they are exact dimensional and satisfy the appropriate

version of the Ledrappier-Young formula. However, as in Theorem 6.1.5, we also

pay the price of having to restrict to a specific class of self-affine sets. Our setting

can be viewed as an extension of the self-affine carpets discussed in Section 2.4.3; in

particular we consider planar self-affine sets generated by IFS where the contractions

are all either diagonal or anti-diagonal matrices. We will define these in Section 6.1.1.

One of our main tools, which may be of independent interest, is that even

though our measures are not quasi-Bernoulli, we show they are equal to the sum
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of (the pushforwards) of two quasi-Bernoulli measures on an associated subshift of

finite type.

The chapter is structured as follows. In 6.1.1, we introduce the class of

self-affine sets that will be considered.

In Section 6.2 we introduce the measure whose dimension we will be study-

ing and conduct an analysis of its structure. This will involve introducing a related

subshift of finite type and showing that our measure can be written in terms of two

quasi-Bernoulli measures which are supported on this shift space. This characteri-

sation forms the backbone of all subsequent proofs.

In Section 6.3 we state and discuss the main dimension related results of this

chapter. In Section 6.4, using the description of the measure provided in Section

6.2, we prove these results.

6.1.1 Our class of planar self-affine sets

In this section, we introduce the class of self-affine sets that will be studied through-

out this chapter.

Let I = {1, . . . , d} be a finite alphabet and {Si}i∈I be a finite collection of

affine maps acting on the plane such that the associated linear parts are contracting

non-singular 2×2 real-valued matrices with non-negative entries which are all either

diagonal or anti-diagonal and we assume the collection contains at least one of each.

In particular, we order the maps in the following way: let Si = Ai + ti where

Ai =

[
ai 0

0 bi

]

for i < l and

Ai =

[
0 ai

bi 0

]
for i > l where l − 1 is the number of diagonal matrices in the IFS, that is, 1 < l 6

|I| = d. We will also assume that for some 1 6 i 6 l − 1 we have that ai 6= bi (so

our system is not self-similar).

We may assume for convenience that each Si maps the unit square into

itself. Recall that by Theorem 2.4.1 there exists a unique non-empty compact set

F ⊆ [0, 1]2 satisfying:

F =
⋃
i∈I

Si(F )

which we call the self-affine set corresponding to the iterated function system
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{Si}i∈I .
We provide a simple example of an IFS which belongs to this class, which

we will return to throughout the chapter to illustrate some of the concepts that are

introduced.

Example 6.1.6. Let {Ti}2i=1 be the IFS with maps T1 and T2 given by

T1 =

[
1
2 0

0 1
3

]
T2 =

[
0 1

2
1
3 0

]
+

[
1
2
2
3

]
.

We will denote the linear parts of T1 and T2 by M1 and M2 respectively.

These self-affine sets were introduced in [Fr1] and were designed as a natural

extension of the self-affine carpets introduced by Bedford-McMullen in [Be; Mc] (see

Example 2.4.5) and developed by several others, such as [Ba1; GL; FW].

In general, carpets refer to planar self-affine sets generated by diagonal ma-

trices. The key difference in the sets we consider here is the presence of anti-diagonal

matrices. This causes the system to be irreducible - in the sense of Definition 2.5.18.

To see this, observe that since some of the matrices Ai are antidiagonal, there cannot

be a one-dimensional linear subspace of R2 that is preserved by all of the matrices

Ai.

This is important, since it means that we can use Corollary 2.5.19 to define

equilibrium measures in the sense of (2.18). We will make this precise in Section

6.2.1.

Also, observe that the presence of anti-diagonal matrices causes the system

to fail the totally dominated splitting condition. To see this, first we’ll show that

(6.1) cannot be satisfied for r = 1 for any constants C, λ. Consider i where

Ai =

[
ai 0

0 bi

]

and ai 6= bi and j where

Aj =

[
0 aj

bj 0

]
.

In this case we have that for any n ∈ N

Ani (Aj)A
n
i =

[
0 ani ajb

n
i

bni bja
n
i 0

]
.
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Without loss of generality, we can assume that aj > bj so that

α2(Ani (Aj)A
n
i )

α1(Ani (Aj)Ani )
=
bj
aj
.

Therefore, clearly no constants C, λ exist for (6.1) to hold.

To see that (6.2) is not possible, let

Ai =

[
ai 0

0 bi

]

where ai 6= bi as before, and without loss of generality we can assume that ai > bi.

Then
α2(Ani )

α1(Ani )
=

(
bi
ai

)n
→ 0

and thus no constant C can exist for (6.2) to hold.

6.2 Description of equilibrium states

This section is dedicated to introducing the measures that will be studied throughout

the chapter and investigating their measure theoretic and ergodic properties. In 6.2.1

and 6.2.2 we define the equilibrium measures m that we are interested in studying,

and show that they are not quasi-Bernoulli. In 6.2.3 we introduce the subshift of

finite type ΣA and a mapping τ : Σ → ΣA which will play a key role in describing

the structure of our measure. In 6.2.4 we introduce Gibbs measures m1 and m2

on ΣA and outline some of their important properties. In 6.2.5, we prove that our

equilibrium measure can be written in terms of the Gibbs measures m1 and m2, in

particular that m = m1 ◦ τ +m2 ◦ τ . In 6.2.6 we obtain an interesting expression for

the Lyapunov exponents of µ = m ◦Π−1 as a result of the structure of our measure

m, and we prove that the Lyapunov exponents χ1(µ), χ2(µ) are distinct. In 6.2.7

we consider the projections of m1 ◦ τ and m2 ◦ τ to the x and y axes, and deduce

their dimensional properties.

6.2.1 Definition of m via a variational principle

Recall that for a self-affine system, we can define the singular value function φs :

Σ∗ → R+, which was initially introduced by Falconer to study the dimension of the

attractor of a self-affine IFS. In this chapter, we are interested in the equilibrium

states which emerge from the variational principle for φs.
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For s ∈ (0, 2], the singular value function has the simple form

φs(i) =

{
α1(i)s s ∈ (0, 1)

α1(i)α2(i)s−1 s ∈ [1, 2]

Recall that φs(i) is submultiplicative. This allows the subadditive pressure to be

defined as in (2.15) by

P (s) = lim
n→∞

1

n
log

 ∑
i∈{1,...,d}n

φs(i)

 .

Therefore, by Corollary 2.5.19 it follows that there exists a unique σ-invariant prob-

ability measure ms that satisfies

P (s) = h(ms) + lim
n→∞

1

n

∑
i∈Σn

ms([i]) log φs(i).

Moreover, by this same result we know that this measure is ergodic and satisfies the

Gibbs property, i.e. there exists a universal constant C0 > 1 such that for all i ∈ Σ∗

we have

C−1
0 e−P (s)|i| φs([i]) 6 ms([i]) 6 C0e

−P (s)|i| φs([i]) (6.3)

where |i| denotes the length of the string. We also know that this is the unique

σ-invariant probability measure that is Gibbs for the potential φs.

Remark 6.2.1. Observe that we use ‘Gibbs’ in the sense of Section 2.5.3.

Remark 6.2.2. Observe that we could use Theorem 2.5.17 instead of Corollary

2.5.19 to determine the existence of m, since the corresponding ‘irreducibility’ con-

dition is easy to verify. In particular, for each i, j ∈ Σ∗, we can cleverly choose

k ∈ {1, . . . , d} depending on whether Ai, Aj are diagonal/ antidiagonal and guaran-

tee that φs(ikj) > cφs(i)φs(j), where c can be taken as the smallest contraction ratio

that appears amongst the matrices {Ai}.

We fix s < 2 and let µ = µs be the measure on F corresponding to m = ms.

We call m (and µ) a Käenmäki measure, following [K] where such measures were

first considered in this context.

6.2.2 Proof that m is not quasi-Bernoulli

Recall that in Theorem 6.1.5, Bárány and Käenmäki already considered the dimen-

sion of quasi-Bernoulli measures. It is not immediately obvious as to whether or
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not ms is quasi-Bernoulli. In this section we show that for each s ∈ (0, 2), ms is

not quasi-Bernoulli (although it is submultiplicative). This confirms that we are

working with a measure beyond the quasi-Bernoulli setting, which has already been

considered in [BK].

Recall that a measure λ is a quasi-Bernoulli measure if there exists a universal

constant C > 1 such that for all i, j ∈ Σ∗ we have

1

C
λ([i])λ([j]) 6 λ([ij]) 6 C λ([i])λ([j]). (6.4)

In this case, we may also say that λ ◦Π−1 is a quasi-Bernoulli measure.

Fix s ∈ (0, 2) and set m = ms. Since φs is submultiplicative, it follows that

m is submultiplicative, that is, the right hand side of (6.4) always holds. Therefore,

in order to show that m is not quasi-Bernoulli, we need to show that it is not

supermultiplicative. This essentially boils down to the presence of both diagonal

and anti-diagonal matrices amongst the {Ai}di=1.

We will show that φs is not a supermultiplicative potential, and the desired

result follows from this fact.

The proof is similar to the proof of irreducibility in Section 6.1.1. Consider

i where

Ai =

[
ai 0

0 bi

]
and ai 6= bi and j where

Aj =

[
0 aj

bj 0

]
.

In this case we have that for n ∈ N

Ani (Aj)A
n
i =

[
0 ani ajb

n
i

bni bja
n
i 0

]
.

Now, let’s assume that ai > bi and aj > bj and that 0 < s 6 1. Then

φs(Ani (Aj)A
n
i ) = (ani b

n
i aj)

s

φs(Ani Aj) = (ani aj)
s

φs(Ani ) = (ani )s.

Therefore,
φs(Ani (Aj)A

n
i )

φs(Ani Aj)φ
s(Ani )

=

(
ani b

n
i aj

a2n
i aj

)s
=

(
bi
ai

)sn
→ 0
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as n → ∞, and so in this case it is clear that no constant c > 0 exists for which

φs(Ani (Aj)A
n
i ) > cφs(Ani Aj)φ

s(Ani ). The cases corresponding to alternative assump-

tions on ai, bi, aj , bj along with the case that s ∈ (1, 2) can be treated similarly, to

deduce that for all 0 < s < 2 we have

lim
n→∞

φs(Ani (Aj)A
n
i )

φs(Ani Aj)φ
s(Ani )

= 0.

Therefore, there does not exist c > 0 such that

φs(Ani (Aj)A
n
i ) > cφs(Ani Aj)φ

s(Ani )

for all n ∈ N. Thus, φs is not supermultiplicative, and so if s < 2 the Käenmäki

measure cannot be supermultiplicative and, in particular, cannot be quasi-Bernoulli.

6.2.3 The subshift ΣA

We now introduce the subshift of finite type, ΣA, and two maps τ, ω : Σ → ΣA

which play a key role in describing the structure of the measure m = ms.

Let ΣA the sub-shift of finite type on {1, . . . , 2d}N corresponding to the tran-

sition matrix A given by

A(i, j) =


1 i ∈ {1, . . . , l − 1} ∪ {d+ l, . . . , 2d} and j 6 d

1 i ∈ {l, . . . , d+ l − 1} and j > d

0 otherwise.

In particular, the matrix A∗ given by

A∗ =


1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0


is a ‘collapsed’ version of the matrix A, in sense that the first row (respectively

column) of A∗ corresponds to the rows (respectively columns) of A indexed by

1 6 i 6 l− 1, the second to l 6 i 6 d, the third to d+ 1 6 i 6 d+ l− 1 and the last

to d+ l 6 i 6 2d. Notice that A2
∗ has all positive entries, and therefore A2 also has

all positive entries.

Next, define τ : Σ → ΣA by τ(i) = τ(i1i2 . . . ) = (τ1(i)τ2(i) . . . ) where
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τ1(i) = i1 and

τm(i) =

{
im if card{1 6 j 6 m− 1 : ij > l} even

im + d if card{1 6 j 6 m− 1 : ij > l} odd.

The purpose of this associated subshift of finite type is to precisely record at which

times the orientation is preserved. More precisely, τm(i) is in the ‘first half’ of the

double system if and only if the linear part of the map Si|m−1
is a diagonal matrix.

Note that τ is not a surjection (but it is an injection) and the image of τ is the

subset of ΣA consisting of sequences where the first digit is at most d.

It will be convenient to introduce ω : Σ→ ΣA which is the projection to the

complement of τ(Σ). Let ω : Σ→ ΣA by ω(i) = ω(i1i2 . . . ) = (ω1(i)ω2(i) . . . ) where

ω1(i) = i1 + d and

ωm(i) =

{
im + d if card{1 6 j 6 m− 1 : ij > l} even

im if card{1 6 j 6 m− 1 : ij > l} odd.

We then have that ΣA = τ(Σ) ∪ ω(Σ) where the union is disjoint.

Example 6.2.3. We illustrate these objects by returning to Example 6.1.6. In this

case, observe that ΣA is the subshift of finite type on {1, 2, 3, 4}N corresponding to

the transition matrix A = A∗, where the equality of A and A∗ is down to the fact

that we only have one diagonal matrix and one antidiagonal matrix in our system.

Consider the periodic point i = (12)∞ ∈ Σ. Then τ(i) = (1234)∞ and

ω(i) = (3412)∞.

6.2.4 Potentials and Gibbs measures

We are now ready to introduce the Gibbs measures m1 and m2 on ΣA, which play a

central part in relating the measure m to ΣA. We will also introduce a measure ν on

Σ, which is defined in terms of m1 and m2, and study some of its basic properties.

It will turn out in a later section that in fact ν = m.

We begin by defining locally constant potentials f1,s, f2,s : ΣA → R by

f1,s(i) =

{
s log ai1 i1 6 d

s log bi1−d i1 > d+ 1

and

f2,s(i) =

{
s log bi1 i1 6 d

s log ai1−d i1 > d+ 1
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when s ∈ (0, 1) and similarly

f1,s(i) =

{
log ai1 + (s− 1) log bi1 i1 6 d

log bi1−d + (s− 1) log ai1−d i1 > d+ 1

and

f2,s(i) =

{
log bi1 + (s− 1) log ai1 i1 6 d

log ai1−d + (s− 1) log bi1−d i1 > d+ 1

when s ∈ [1, 2].

Observe that by symmetry, for all i ∈ Σ

f1,s ◦ τ = f2,s ◦ ω (6.5)

f1,s ◦ ω = f2,s ◦ τ. (6.6)

In order to understand the underlying structure of the measure m, it is important to

understand the role of the potentials f1,s and f2,s. For the time being, we fix s = 1

and i ∈ Σ. Observe that for all n ∈ N, Snf1,1 ◦ τ(i) produces the (logarithm of)

the length of the horizontal side of the rectangle Ai|n([0, 1]2). analogously, Snf2,1 ◦
τ(i) produces the (logarithm of) the length of the vertical side of the rectangle

Ai|n([0, 1]2). By (6.6) we can also swap τ for ω and obtain the same statements,

except with each instance of ‘horizontal’ switched with ‘vertical’.

Example 6.2.4. To give an example, we return to Example 6.1.6. Let i = (12)∞ ∈
Σ. Then

Mi1 =

[
1
2 0

0 1
3

]
Mi1i2 =

[
0 1

4
1
9 0

]
Mi1i2i3 =

[
0 1

12
1
18 0

]
.

We saw earlier that τ((12)∞) = (1234)∞, and therefore it is easy to see that

S1f1,1 ◦ τ(i) = log
1

2

S2f1,1 ◦ τ(i) = log
1

2
+ log

1

2
= log

1

4

S2f1,1 ◦ τ(i) = log
1

2
+ log

1

2
+ log

1

3
= log

1

12
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and

S1f2,1 ◦ τ(i) = log
1

3

S2f2,1 ◦ τ(i) = log
1

3
+ log

1

3
= log

1

9

S2f2,1 ◦ τ(i) = log
1

3
+ log

1

3
+ log

1

2
= log

1

18

as expected.

For general s, Snf1,s ◦ τ(i) and Snf2,s ◦ τ(i) produce the analogue of this. In

particular, Snf1,s ◦τ(i) produces the logarithm of the length of the horizontal side of

the rectangle Ai|n([0, 1]2) plus s− 1 times the logarithm of the length of the vertical

side of the rectangle Ai|n([0, 1]2). Snf2,s ◦ τ(i) produces the analogue of this, with

all instances of ‘horizontal’ and ‘vertical’ switched.

It should now be easy to see that log φs(i|n) will be the maximum of these.

Example 6.2.5. Returning to Example 6.2.4 and i = (12)∞ ∈ Σ, we see that

φ1(i|3) = 1
12 = max{ 1

12 ,
1
18} = max{exp(S3f1,1τ(i)), exp(S3f2,1τ(i))}.

We state this important observation as a lemma.

Lemma 6.2.6. For all i ∈ Σ and n ∈ N we have that

φs(i|n) = max{expSnf1,s(τ(i)), expSnf2,s(τ(i))}.

Proof. This follows immediately from the definitions.

Next we move on to defining the associated Gibbs measures for these po-

tentials. Since A is aperiodic (since all the entries in A2 are positive), by Theorem

2.5.3 there exist unique invariant Gibbs probability measures m1 and m2 for the

potentials f1,s and f2,s. Therefore, denoting the topological pressure on ΣA of f1,s

and f2,s by PA(f1,s) and PA(f2,s) respectively,

m1([i|n]) � exp(Snf1,s(i)− nPA(f1,s))

and

m2([i|n]) � exp(Snf2,s(i)− nPA(f2,s))

where a � b means that C−1a 6 b 6 Ca for some universal constant C.

Observe that by symmetry, PA(f1,s) = PA(f2,s). To see this, consider the
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map b : ΣA → ΣA which sends

ik → ik + d if ik ∈ {1, . . . , d}
ik → ik − d if ik ∈ {d+ 1, . . . , 2d}.

Using the transition matrix A, it is easy to check that this map is well defined and

bijective. Therefore given a periodic point i = σni ∈ ΣA, b(i) is also a periodic point

of period n, and since both Snf1,s(i) = Snf2,s(b(i)) and Snf1,s(b(i)) = Snf2,s(i), it

follows that PA(f1,s) = PA(f2,s).

By symmetry, we also have

m1 ◦ τ = m2 ◦ ω (6.7)

m1 ◦ ω = m2 ◦ τ. (6.8)

To see this, consider again the bijection b : ΣA → ΣA. Clearly b has the property

that

b(τ(i)) = ω(i) and b(ω(i)) = τ(i). (6.9)

It is easy to see that m1 ◦ b is an invariant probability Gibbs measure for f2,s and

so by uniqueness, m1 ◦ b = m2. Thus (6.8) follows by (6.9).

Next, we move on to defining a measure ν on Σ in terms of the mea-

sures m1 and m2. Since τ is an injection, we can define a measure ν on Σ by

ν(E) = m1(τ(E)) +m2(τ(E)). ν is a probability measure since ν(Σ) = m1(τ(Σ)) +

m2(τ(Σ)) = m1(τ(Σ)) +m1(ω(Σ)) = m1(ΣA) = 1.

Also, although m1 ◦ τ and m2 ◦ τ are not invariant, ν is invariant, which we

will prove next.

Lemma 6.2.7. ν = m1 ◦ τ +m2 ◦ τ is shift invariant.

Proof. By the Carathéodory extension theorem, it is enough to check that ν(σ−1([i|n])) =

ν([i|n]) for i ∈ Σ and n ∈ N. Let i|n = i1, . . . , in and fix i0 ∈ I. Then τ([i0, . . . , in]) =

[i0, τ1(i), . . . , τn(i)] if 1 6 i0 6 l − 1 and ω([i0, . . . , in]) = [i0 + d, τ1(i), . . . , τn(i)] if

l 6 i0 6 d.

Also, note that for l 6 i0 6 d,

m1(τ([i0, . . . , in])) = m2(ω([i0, . . . , in])) = m2([i0 + d, τ1(i), . . . , τn(i)])
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and similarly

m2(τ([i0, . . . , in])) = m1(ω([i0, . . . , in])) = m1([i0 + d, τ1(i), . . . , τn(i)]).

Therefore,

m1(τ(σ−1([i1 . . . in]))) =
l−1∑
i0=1

m1(τ([i0, . . . , in])) +
d∑

i0=l

m1(τ([i0, . . . , in]))

=
l−1∑
i0=1

m1([i0, τ1(i) . . . , τn(i)]) +
d∑

i0=l

m2([i0 + d, τ1(i), . . . , τn(i)])

and similarly

m2(τ(σ−1([i1 . . . in]))) =
l−1∑
i0=1

m2(τ([i0, . . . , in])) +
d∑

i0=l

m2(τ([i0, . . . , in]))

=
l−1∑
i0=1

m2([i0, τ1(i) . . . , τn(i)]) +
d∑

i0=l

m1([i0 + d, τ1(i), . . . , τn(i)])

so that

ν(σ−1([i|n])) = m1(τ(σ−1([i1 . . . in]))) +m2(τ(σ−1([i1 . . . in])))

=
∑

16i06l−1

m1([i0, τ1(i) . . . , τn(i)]) +
∑

d+l6i062d

m1([i0, τ1(i) . . . , τn(i)])

+
∑

16i06l−1

m2([i0, τ1(i) . . . , τn(i)]) +
∑

d+l6i062d

m2([i0, τ1(i) . . . , τn(i)])

= m1(σ−1τ([i|n])) +m2(σ−1τ([i|n])) = ν([i|n])

where the last line follows by invariance of m1 and m2.

6.2.5 Proof that m = ν

In this section we prove that the measure ν that we have just constructed is in

fact equal to the Käenmäki measure m. Since we have already shown that it is an

invariant probability measure, it only remains to prove the Gibbs property for ν.

The Gibbs property essentially falls out as a direct consequence of the ob-

servation in Lemma 6.2.6, and thus we prove that m = ν in the next result. Addi-

tionally, we also show that P (s) = PA(f1,s) = PA(f2,s) all coincide.
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Corollary 6.2.8. There exists C > 0 such that for all i ∈ Σ and n ∈ N

C−1 6
ν([i|n])

φs(i|n) exp(−nPA(f1,s))
6 C.

In particular, ν = m is the unique Käenmäki measure for φs and P (s) = PA(f1,s) =

PA(f2,s).

Proof. It follows from the Gibbs properties form1 andm2 and the fact that PA(f1,s) =

PA(f2,s) that

ν([i|n]) = m1(τ([i|n])) +m2(τ([i|n]))

� exp(−nPA(f1,s)) exp(Snf1,s(τ(i))) + exp(−nPA(f2,s)) exp(Snf2,s(τ(i)))

� exp(−nPA(f1,s)) max{exp(Snf1,s(τ(i))), exp(Snf2,s(τ(i)))}

and the first result now follows using Lemma 6.2.6. Finally, by combining this and

the Gibbs property for the Käenmäki measure m we get

ν([i|n])

m([i|n])
� exp(n(P (s)− PA(f1,s))).

To see that PA(f1,s) = P (s), assume that P (s) > PA(f1,s) instead. Then

fn(i) :=
ν([i|n])

m([i|n])
→∞

for all i ∈ Σ. Thus fn →∞ in m-measure, and therefore there exists a set A, with

m(A) > 2
3 with the property that fn(i) > 2 for all i ∈ A. By construction, A must

be a collection of cylinders of length n, thus

ν(A) > 2m(A) >
4

3

which contradicts the fact that ν is a probability measure. So P (s) 6 PA(f1,s). A

symmetric argument implies that PA(f1,s) 6 P (s), so the result follows.

Finally since ν and m are both invariant, it follows by the uniqueness of

property (6.3) that ν = m.

6.2.6 Lyapunov exponents of µ

Recall that whenever the Lyapunov exponents χ1(µ) = χ2(µ), we are in the setting

of Theorem 6.1.1 where it is already known that µ is exact dimensional. However,

in this section we show that our Lyapunov exponents are distinct. Furthermore, by
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using the fact that m = ν = m1 ◦ τ + m2 ◦ τ , we show that in our setting we can

express each Lyapunov exponent as the integral of one of the potentials f1,1, f2,1

with respect to m1 (and similarly for m2).

Remark 6.2.9. Note that in the following two results we emphasise the dependence

of f1,s and f2,s on s, so we can use f1,1 and f2,1 to express the Lyapunov exponents,

but for simplicity of exposition we deliberately suppress this dependence when writing

the measures m1, m2, ν and of course m and µ.

In the following preparatory lemma we study the integrals of f1,1 and f1,2

with respect to the measures m1 and m2.

Lemma 6.2.10. We have that∫
f1,1dm1 =

∫
f2,1 dm2 >

∫
f2,1dm1 =

∫
f1,1dm2.

Proof. The fact that
∫
f1,1dm1 =

∫
f2,1dm2 and

∫
f2,1dm1 =

∫
f1,1dm2 follows by

the properties (6.6), (6.8). In particular,∫
f1,1dm1 =

∫
f1,1 ◦ τdm1 ◦ τ +

∫
f1,1 ◦ ωdm1 ◦ ω

=

∫
f2,1 ◦ ωdm2 ◦ ω +

∫
f2,1 ◦ τdm2 ◦ τ =

∫
f2,1dm2

and similarly we also see that
∫
f2,1dm1 =

∫
f1,1dm2.

For m1 almost all i ∈ ΣA we have that

lim
n→∞

Snf1,1(i)

n
=

∫
f1,1dm1 =

∫
f2,1dm2

and

lim
n→∞

Snf2,1(i)

n
=

∫
f2,1dm1 =

∫
f1,1dm2.

To show that
∫
f1,1dm1 >

∫
f2,1dm1, suppose for a contradiction that

∫
f2,1dm1 >∫

f1,1dm1 instead. Then we also have that
∫
f2,sdm1 >

∫
f1,sdm1. To see this,

observe that if 0 < s 6 1 then it just follows from the fact that f1,s = sf1,1 and

f2,s = sf2,1. If 1 < s < 2 then f1,s = f1,1 + (s− 1)f2,1 and f2,s = f2,1 + (s− 1)f1,1,

and so ∫
f2,sdm1 −

∫
f1,sdm1 = (2− s)

∫
f2,1dm1 − (2− s)

∫
f1,1 > 0

since s < 2.
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This means that by using the Gibbs property, the fact that PA(f1,s) =

PA(f2,s) and the fact that

lim
n→∞

Snf1,s(i)

n
=

∫
f1,sdm1

and

lim
n→∞

Snf2,s(i)

n
=

∫
f2,sdm1

for m1 almost all i, it follows that

lim
n→∞

m2([i1, . . . , in])

m1([i1, . . . , in])
= lim

n→∞
exp

(
n

(∫
f2,sdm1 −

∫
f1,sdm1

))
=∞

for m1 almost all i. Since m1 and m2 are probability measures, we can use a similar

argument to the one in the proof of Corollary 6.2.8 to obtain a contradiction.

Using the above result, we relate the Lyapunov exponents of µ to integrals

of f1,1 and f2,1 with respect to the measures m1 and m2. Furthermore, we prove

that χ1(µ) 6= χ2(µ) which takes us away from the setting of Theorem 6.1.1.

Corollary 6.2.11. We have that

χ1(µ) = −
∫
f1,1dm1 < χ2(µ) = −

∫
f2,1dm1

and for ν-almost all i ∈ Σ we have that

lim
n→∞

(
α2(i|n)

α1(i|n)

)
= 0.

Proof. We know that all i ∈ Σ satisfy

α1(i|n) = max{exp(Snf1,1(τ(i))), exp(Snf2,1(τ(i)))}

and

α2(i|n) = min{exp(Snf1,1(τ(i))), exp(Snf2,1(τ(i)))}.

Since we know by Lemma 6.2.10 that
∫
f1,1dm1 >

∫
f2,1dm1, and since m1 ◦τ � m,

it follows that for m1 ◦ τ almost all i ∈ Σ,

− lim
n→∞

1

n
logα1(i|n) = −

∫
f1,1dm1
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and

− lim
n→∞

1

n
logα2(i|n) = −

∫
f2,1dm1.

Similarly it can be shown that for m2 ◦ τ almost all i ∈ Σ,

− lim
n→∞

1

n
logα1(i|n) = −

∫
f2,1dm2

and

− lim
n→∞

1

n
logα2(i|n) = −

∫
f1,1dm2.

Moreover, sincem = m1◦τ+m2◦τ and−
∫
f1,1dm1 = −

∫
f2,1dm2 and−

∫
f2,1dm1 =

−
∫
f1,1dm2, then it follows that

χ1(µ) = −
∫
f1,1dm1 = −

∫
f2,1dm2 and χ2(µ) = −

∫
f2,1dm1 = −

∫
f1,1dm2.

To see why χ1(µ) < χ2(µ), suppose that we have equality instead. Then it follows

immediately that limn→∞

(
α1(i|n)
α2(i|n)

) 1
n

= 1. Therefore, there exist constants C ′, P ′

such that
1

C ′
e−nP

′
6
α1(i|n)

α2(i|n)
6 C ′enP

′
.

Therefore, for all i ∈ Σ and n ∈ N,

m(i|n) � φs(i|n)e−nP (s)

� α1(i|n)
s
2α2(i|n)

s
2 enP

′′

for some uniform constant P ′′. Thus, m is also an equilibrium state for the additive

potential i 7→ s
2 logα1(i)α2(i). This means that m is quasi-Bernoulli and we have

already observed that in our setting this is not the case, so we obtain the desired

contradiction.

Finally, χ1(µ) < χ2(µ) implies that for m-almost every i ∈ Σ,

lim
n→∞

log

(
α2(i|n)

α1(i|n)

) 1
n

< 0.

Thus, there exists 0 < a < 1, N ∈ N such that for n > N ,

(
α2(i|n)

α1(i|n)

) 1
n

< a.

In particular, for all n > N , α2(i|n)
α1(i|n) 6 an, and the conclusion follows.
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6.2.7 Projections of m1 ◦ τ and m2 ◦ τ

The Ledrappier-Young formula gives the dimension of a measure in terms of the

dimension of a projected measure (as well as the entropy and Lyapunov exponents).

Therefore, since the identity m = m1 ◦ τ +m2 ◦ τ will be central to our verification

of exact-dimensionality, we need to consider the projections of m1 ◦ τ and m2 ◦ τ to

the x and y axes.

The final piece of notation we introduce is µt = mt◦τ ◦Π−1, the pushforward

measure of mt ◦ τ onto F . Let π1 denote the projection to the x co-ordinate and

π2 denote the projection to the y co-ordinate. Then we know about the exact

dimensionality of the projections of µ1 and µ2 under m1 and m2.

Proposition 6.2.12. All the measures π1(µ1), π1(µ2), π2(µ1) and π2(µ2) are exact

dimensional and we have that dimπ1(µ1) = dimπ2(µ2) and dimπ2(µ1) = dimπ1(µ2).

A proof of this is given in Appendix C.

6.3 Results

We now obtain our results by using the structure of the Käenmäki measure described

in the previous section. For convenience, we assume that the underlying IFS satisfies

the strong separation property, which means that for distinct i, j ∈ I, we have

Si(F )∩Sj(F ) = ∅. Observe that this implies that there exists some δ > 0 such that

for any i, j ∈ {1, . . . , d} with i 6= j,

d(x, y) > δ (6.10)

for all x ∈ Si(F ) and y ∈ Sj(F ), where d is the usual Euclidean metric.

Recall the definition of the entropy h(µ) of µ defined in Theorem 2.4.8. The

following is our main result.

Theorem 6.3.1. Assume the self-affine set F satisfies the strong separation prop-

erty and let µ be any Käenmäki measure for F . Then µ is exact dimensional, with

the exact dimension given by

dimµ =
h(µ)

χ2(µ)
+
χ2(µ)− χ1(µ)

χ2(µ)
dimπ1(µ1).

Thus µ satisfies the appropriate version of the Ledrappier-Young formula.

We get the following corollary, which gives simpler formulae in the case where

dimπ1(µ1) is what it is ‘expected to be’.
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Corollary 6.3.2. If dimπ1(µ1) = min
{
h(µ)
χ1(µ) , 1

}
then

dimµ =

{
h(µ)
χ1(µ) if h(µ) 6 χ1(µ)

1 + h(µ)−χ1(µ)
χ2(µ) if h(µ) > χ1(µ).

Proof. We first suppose that dimπ1(µ1) = h(µ)
χ1(µ) 6 1. In this case we have

dimµ =
h(µ)

χ2(µ)
+
χ2(µ)− χ1(µ)

χ2(µ)
dimπ1(µ1)

=
h(µ)

χ2(µ)
+
χ2(µ)− χ1(µ)

χ2(µ)

h(µ)

χ1(µ)

=
h(µ)

χ1(µ)
.

On the other hand if dimπ1(µ1) = 1 < h(µ)
χ1(µ) then

dimµ =
h(µ)

χ2(µ)
+
χ2(µ)− χ1(µ)

χ2(µ)
dimπ1(µ1)

=
h(µ)

χ2(µ)
+
χ2(µ)− χ1(µ)

χ2(µ)

= 1 +
h(µ)− χ1(µ)

χ2(µ)

completing the proof.

Recall that the affinity dimension dimA F of F is defined as the value s0 for

which

P (s0) = lim
n→∞

1

n
log

 ∑
i∈{1,...,d}n

φs0(i)

 = 0.

In [MS], Morris and Shmerkin showed that for a large class of attractors of the same

self-affine systems that we have been considering in this chapter, the Hausdorff

dimension of the attractor is given by the affinity dimension. In particular, they

proved the following result.

Theorem 6.3.3. Assume the set-up of Theorem 6.3.1. Additionally assume that:

1. All coefficients of Ai and ti are algebraic.

2. For all n ∈ N and any i, j ∈ {1, . . . , d}n for which either Ai and Aj are both

diagonal or both antidiagonal, then π1(Si(0)) 6= π1(Sj(0)) and π2(Si(0)) 6=
π2(Sj(0)).
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Then dimH F = s0 = dimA F .

Moreover, our class of self-affine sets was recently considered by Morris in

[Mo1], who derived an explicit formula for the pressure allowing very straightforward

calculation of the affinity dimension. In particular, he showed that the affinity

dimension is the unique real number s > 0 for which either:

1. 0 < s 6 1 and [∑l−1
i=1 a

s
i

∑d
i=l a

s
i∑d

i=l b
s
i

∑l−1
i=1 b

s
i

]
has spectral radius 1, or

2. 1 6 s 6 2 and [∑l−1
i=1 aib

s−1
i

∑d
i=l aib

s−1
i∑d

i=l a
s−1
i bi

∑l−1
i=1 a

s−1
i bi

]
has spectral radius 1, or

3. s > 2 and
d∑
i=1

(aibi)
s
2 = 1.

In light of this and Theorem 6.3.3, we see that a consequence of our main

theorem is that under a condition on the dimension of the projected measure, such

systems have an ergodic measure of maximal dimension.

To see this, suppose that s0 6 1 and observe that by (2.17) and the fact that

µ = µs0 is ergodic,

P (s0) = h(µ)− s0χ1(µ).

Rearranging this gives

s0 =
h(µ)

χ1(µ)

because P (s0) = 0. Since h(µ) = s0χ1(µ) 6 χ1(µ) it follows that

dimµ =
h(µ)

χ1(µ)
= s0.

The case where s0 > 1 follows similarly.

6.4 Proof of Theorem 6.3.1

In this section we prove Theorem 6.3.1 by adapting an approach of Przytycki and

Urbański from [PU1]. In [PU1], Przytycki and Urbański relate the dimension of
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a self-affine measure in two dimensions to the dimension of a self-similar measure

in one dimension (in their case a Bernoulli convolution). In our case, we’ll need

to consider two measures in one dimension, in particular these will be π1(µ1) and

π2(µ2). Rather than being strictly self-similar, these are Gibbs measures on a graph

directed self-similar iterated function system. This approach is also similar to one

used by Falconer and Kempton in [FK2].

At a couple of points in this section we will use Proposition 2.3.2 (2) to deduce

that one measure ‘dominates’ another. In particular, notice that a straightforward

consequence of this proposition is that whenever a measure µ is not absolutely

continuous with respect to λ (where µ, λ are Radon measures on Rd) then

lim sup
r→0

λ(B(x, r))

µ(B(x, r))
= 0

for µ-almost every x ∈ Rd, so that µ(B(x, r)) ‘dominates’ λ(B(x, r)) at all small

scales r.

The following lemma will allow us to also deduce a symbolic analogue of the

above result.

Lemma 6.4.1. For m-almost all i ∈ Σ, there exists a constant 0 < C < ∞ (inde-

pendent of r) such that for all r > 0 there exists n ∈ N for which

µ1(B(Π(i), r))

µ2(B(Π(i), r))
> C

m1 ◦ τ([i|n])

m2 ◦ τ([i|n])

and
µ2(B(Π(i), r))

µ1(B(Π(i), r))
> C

m2 ◦ τ([i|n])

m1 ◦ τ([i|n])
.

Proof. Throughout this proof we denote δ > 0 to be the constant given by (6.10).

Let i belong to the full m-measure set for which

lim
n→∞

α2(i|n)

α1(i|n)
= 0.

Let x = Π(i) and fix some r > 0. Choose integers m < n for which

α1(i|n) <
r

2
< α1(i|n−1)

and

δα2(i|m) < r < δα2(i|m−1).
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Then by construction, Π([i|n]) ⊂ B(x, r) ⊂ Π([i|m]). By the Gibbs property for m1

and m2,

m1 ◦ τ([i|n]) � exp(−nPA(f1,s)) exp(Snf1,s(τ(i)))

� exp(−mPA(f1,s)) exp(Smf1,s(τ(i))) · exp(−(n−m)PA(f1,s)) exp(Sn−mf1,s(σ
mτ(i)))

�m1 ◦ τ([i|m]) exp((n−m)c) (6.11)

for some uniform constant c (which comes from the value of PA(f1,s) and the supre-

mum norm of f1,s).

We will show that the difference n−m is bounded above by a constant that

depends only on i (so in particular it is independent of r).

Let λ denote the maximum contraction ratio amongst the matrices {Ai} that

appear in the IFS. Then

r

2
< α1(i|n−1) 6 λn−m−1α1(i|m) = λn−m−1α2(i|m)

α1(i|m)

α2(i|m)
6 λn−m−1 r

δ

α1(i|m)

α2(i|m)
.

Therefore,

n−m 6 1 +
1

log λ
log

(
δ

2
· α2(i|m)

α1(i|m)

)
.

Since

lim
k→∞

α2(i|k)
α1(i|k)

= 0

it follows that supk∈N
α2(i|k)
α1(i|k) 6 c′ for some constant c′ that depends only on i, and

therefore n −m is also bounded above by a constant that depends only on i (and

so is independent of r). It follows that

µ1(B(x, r))

µ2(B(x, r))
>
m1 ◦ τ([i|n])

m2 ◦ τ([i|m])
> C

m1 ◦ τ([i|n])

m2 ◦ τ([i|n])

for some constant C that depends only on i, where the final inequality follows by

(6.11). The second result follows by a symmetric argument.

This final section is structured as follows. In 6.4.1 we begin by collecting some

‘ergodic properties’ of the measures m1 ◦ τ and m2 ◦ τ . Although these measures

are not ergodic (since they are not even invariant), we can still establish equivalent

statements about the behaviour of limits that are usually provided by the Shannon-

McMillan-Breiman Theorem 2.4.8 and Oseledets Theorem 2.4.7 when one is in the

ergodic setting.

Next, in 6.4.2 we make upper and lower estimates on the measure of a care-
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fully defined ‘strip’ of F , in terms of the measure of an appropriate cylinder and

the projected measure of the blow up of the ‘strip’. This step will allow us to

later connect the local dimension of µ with the entropy, Lyapunov exponents and

dimension of the projected measure. The strategies used for the upper and lower

estimates will be different, owing to the fact that m is submultiplicative but not

supermultiplicative.

Next, in 6.4.3 we estimate the projected measure of the blow up of the strip

at ‘typical’ times.

Finally, in 6.4.4 and 6.4.5 we combine the above estimates to compute the

local dimension of µ.

6.4.1 ‘Ergodic properties’ of mt ◦ τ

The measures mt ◦ τ are not invariant and therefore cannot be ergodic. Therefore,

the Lyapunov exponents and entropy are a priori not defined. This is problematic,

since in order to evaluate the local dimension of µ in terms of the entropy and

Lyapunov exponents, we need to know about the mt ◦ τ -typical logarithmic growth

rate of the measure and side lengths of the cylinders that appear as we go deeper

into the construction of F .

Fortunately, we can still recover statements similar to Theorems 2.4.7 and

2.4.8, which will suffice for our purposes. Firstly, it turns out that we can still

control the “Lyapunov exponents” of mt ◦ τ . The following is essentially restating

Corollary 6.2.11.

Lemma 6.4.2. For t = 1, 2, mt ◦ τ almost all i ∈ Σ satisfy

− lim
n→∞

1

n
logα1(i|n) = χ1(µ) < − lim

n→∞

1

n
logα2(i|n) = χ2(µ).

Thus for ν-almost every i ∈ Σ,

α2(i|n)

α1(i|n)
→ 0.

Proof. This follows because mt ◦ τ � m = ν.

Next, we move onto the entropy-type limit we are interested in. It also turns

out that the ‘entropy’ of the measures m1 ◦ τ and m2 ◦ τ is equal to h(µ).

Lemma 6.4.3. For mt ◦ τ almost every i ∈ Σ,

− lim
n→∞

1

n
logmt ◦ τ([i|n]) = h(µ).
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Proof. Since m1 and m2 are distinct ergodic measures, they are mutually singular.

Therefore µ1 is not absolutely continuous with respect to µ2. Thus by Proposition

2.3.2,

lim sup
r→0

µ2(B(x, r))

µ1(B(x, r))
= 0

for µ1 almost every x. By Lemma 6.4.1,

lim sup
n→∞

m2 ◦ τ([i|n])

m1 ◦ τ([i|n])
= 0

for m1 ◦ τ almost every i ∈ Σ. In other words, for m1 ◦ τ almost every i, m1 ◦ τ([i|n])

‘dominates’ m2 ◦ τ([i|n]) for all large n and

h(µ) = − lim
n→∞

1

n
logm([i|n]) = − lim

n→∞

1

n
logm1 ◦ τ([i|n])

for m1 ◦ τ almost all i. By an analogous argument we obtain the same result for

m2 ◦ τ .

6.4.2 Estimates on the measure

In this section, we make estimates on the measure of a typical ‘strip’, which is the

first step towards estimating the local dimension of µ. To this end, we need to

introduce some notation and terminology.

It will be convenient to calculate the local dimension by measuring squares

rather than balls in R2. Let Q1(x, r) denote the one dimensional square of side r

centred at x, given by Q1(x, r) = [x − r
2 , x + r

2 ]. For x = (x, y) let Q2(x, r) denote

the 2-dimensional square of side r which is centred at x, given by

Q2(x, r) =
{

(x′, y′) : |x− x′| 6 r

2
and |y − y′| 6 r

2

}
.

Let x = (x, y) ∈ F with symbolic expansion i ∈ Σ and let n ∈ N. Consider the

cylinder Si|n([0, 1]2). Suppose the side lengths are distinct, so α2(i|n) < α1(i|n). We

shall call the longer side of Si|n([0, 1]2) the primary side. Additionally we shall call

the axis parallel to this side the primary axis and denote the projection onto the

primary axis by πi,np . We may also call the direction of the primary axis the primary

direction. So that this is all well-defined even when α1(i|n) = α2(i|n) we agree that

in this scenario the primary axis is the y axis. We denote the strip of all points

inside Si|n([0, 1]2) that lie r
2 -close to πi,np (x) in the primary direction by B(x, n, r),

and refer to this as the primary strip. We define the secondary projection to be the

primary projection if the linear part of Si|n preserves each co-ordinate axis (i.e., an
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even number of the linear parts {Ai1 , . . . , Ain} are anti-diagonal matrices), and the

other co-ordinate projection otherwise. We denote it by πi,ns (x).

Remark 6.4.4. To simplify the analysis, at several points in the proofs we will

need to consider ‘times’ n when Ai|n is diagonal. Suppose τn+1(i) ∈ {1, . . . , d}.
Then firstly, τ has the multiplicative property τ(i) = τ(i|n)τ(σni). Also, since Ai|n
is diagonal, we have πi,ns = πi,np .

The idea is to bound the measure of a primary strip B(x, n, r) by the measure

of an appropriate cylinder (which contains B(x, n, r)) and the projected measure of

the ‘blow up’ of the strip.

In order to prove the desired lower bound for the local dimension of the

measure (which corresponds to finding an appropriate upper bound for the measure

of any given primary strip), we use sub-multiplicativity of the Käenmäki measure

m. We can get an upper bound on the measure of a primary strip in terms of the

product of the measure of an appropriate cylinder and an appropriate projected

measure of the blow up of the strip.

Lemma 6.4.5. Let x ∈ F with symbolic expansion i ∈ Σ. For any n ∈ N and r > 0

we have

µ(B(x, n, r)) 6 Cm([i|n])πi,ns (µ)

(
Q1

(
πi,ns (Π(σn(i)),

r

α1(i|n)

))
where C > 1 is the uniform constant giving submultiplicativity of m.

Proof. Let

J = J (i, n, r) =
{

j ∈ Σ∗ : Si|nj([0, 1]2) ⊆ B(x, n, r) and Si|nj†([0, 1]2) * B(x, n, r)
}

where j† is j with the last symbol removed. Note that by our separation assump-

tion the family of rectangles {Si|nj([0, 1]2)}j∈J are pairwise disjoint and exhaust

B(x, n, r) in measure. Thus

µ(B(x, n, r)) =
∑
j∈J

m([i|nj])

6 Cm([i|n])
∑
j∈J

m([j])

= Cm([i|n])πi,ns (µ)

(
Q1

(
πi,ns (Π(σn(i)),

r

α1(i|n)

))
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where the last equality follows since the family of rectangles {Sj([0, 1]2)}j∈J are pair-

wise disjoint and exhaust S−1
i|nB(x, n, r) in measure. Then, noting that S−1

i|nB(x, n, r)

is a strip with one side of length 1 and the other of length r/α1(i|n) we have

µ
(
S−1
i|n (B(x, n, r))

)
= πi,ns (µ)

(
Q1

(
πi,ns (Π(σn(i)),

r

α1(i|n)

))
as required.

Next we prove an analogue of Lemma 6.4.5 giving an upper bound for the

local dimension (so a lower bound for the measure). Since the measure µ is not

supermultiplicative, we cannot use similar arguments to the ones we used above.

Instead we employ the supermultiplicativity of mt. Since we saw that τ only had

the multiplicative property τ(i) = τ(i|n)τ(σni) when τn+1(i) ∈ {1, . . . , d}, we will

only be able to get our analogue of Lemma 6.4.5 along a suitable subsequence (for

typical points).

Lemma 6.4.6. Let x ∈ F with symbolic expansion i ∈ Σ, such that i satisfies

that l 6 in 6 d for infinitely many n, i.e. infinitely many of the maps Ain are

‘anti-diagonal’. (Observe that it is a direct consequence of the ergodic theorem that

the set of such i is a set of full measure.) Let nk be any subsequence for which

1 6 τnk+1(i) 6 d for all k ∈ N. Then for any r > 0 and k ∈ N,

ν ◦Π−1(B(x, nk, r)) >µt(B(x, nk, r))

>Cmt ◦ τ([i|nk ])πi,nks (µt)

(
Q1

(
πi,nks (Π(σnk(i)),

r

α1(i|nk)

))
(6.12)

for t = 1, 2 and where the constant C is independent of x, k, r, t.

Proof. Let J be as in the proof of Lemma 6.4.5. Then, using the quasi-Bernoulli

properties of µt we have

µt(B(x, nk, r)) =
∑
j∈J

mt ◦ τ([i|nkj])

=
∑
j∈J

mt(τ([i|nk ])τ([j]))

> cmt ◦ τ([i|nk ])
∑
j∈J

mt ◦ τ([j])

= cmt ◦ τ([i|nk ])πi,nks (µt)

(
Q1

(
πi,nks (Π(σnk(i)),

r

α1(i|nk)

))
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where the second equality holds because we are looking at times nk when i|nk has

seen an even number of rotations, c is a constant that comes from the quasi-Bernoulli

properties of m1 and m2 and everything else follows by the same observations as in

the proof of Lemma 6.4.5.

Finally, the result follows because ν ◦Π−1(B(x, nk, r)) > µt(B(x, nk, r)).

6.4.3 Estimates on the projected measure

In this section, we obtain estimates for the projected measure of the blow up of a

typical primary strip

πi,nks (λ)

(
Q1

(
πi,nks (Π(σnk(i)),

r

α1(i|nk)

))
for λ = µ, µ1, µ2, which appear in the upper and lower estimates in Lemmas 6.4.5

and 6.4.6.

Let s1 = dimπ1(µ1). The key point of the proof of the next lemma is

that an m1-typical point τ(i) will regularly hit times n when the µ measure of

B(Π(σn(τ(i)), r) is sufficiently close to rs1 and the matrix Ai1 · · ·Ain is diagonal

(and the same for the measure m2).

Lemma 6.4.7. For m-almost every i ∈ Σ there exists a choice of t ∈ {1, 2}
and a strictly increasing sequence of positive integers nk for which simultaneously

µt(B(x, nk, r)) satisfies (6.12) for all k ∈ N and such that for all ε > 0 there exists

Nε ∈ N, such that for all k > Nε,

(s1 + ε) log
α2(i|nk)

α1(i|nk)

6 log πi,nks (µt)

(
Q1

(
πi,nks (Π(σnk i),

α2(i|nk)

α1(i|nk)

))
6 (s1 − ε) log

α2(i|nk)

α1(i|nk)
. (6.13)

Moreover, we can choose the sequence nk such that

lim
k→∞

nk+1

nk
→ 1. (6.14)

Proof. Recall that τ : Σ→ τ (Σ) is one-to-one and thus has an inverse. With slight

abuse of notation, for i ∈ τ(Σ) denote Π(i) = Π(τ−1(i)) and αr(i|n) = αr(τ
−1(i)|n)

for r = 1, 2. We will show that for each t = 1, 2, for mt-almost every i ∈ τ(Σ),

there exists a sequence nk such that (6.13) holds for µt. Then the result will follow
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because the union of the pre-images under τ of these full measure sets for m1 and

m2 have full m-measure.

Fix t ∈ {1, 2} and define the function h
(l)
t : τ(Σ)→ R by

h
(l)
t (i) =

log πt(µt)
(
Q1

(
πt(Π(i)), 1

l

))
log 1

l

.

By Proposition 6.2.12 each of πt(µt) are exact dimensional with dimension s1 so

that

lim
l→∞

h
(l)
t (i) = s1

for mt-almost every i ∈ τ(Σ). By Egorov’s theorem, there exists a set Gt ⊂ τ(Σ)

with measure mt(Gt) > mt(τ(Σ))/2 > 0, for which h
(n)
t converges uniformly to s1

for all i ∈ Gt. In particular this means that for all ε > 0, there exists Lε ∈ N such

that for l > Lε,

s1 − ε 6
log πt(µt)

(
Q1

(
πt(Π(i)), 1

l

))
log 1

l

6 s1 + ε

for all i ∈ Gt. Moreover, by the Birkhoff Ergodic Theorem,

lim
n→∞

1

n

n−1∑
k=0

1Gt(σ
ki) =

∫
1Gt dmt > 0

for mt-almost every i ∈ τ(Σ). In other words, for mt-almost every i ∈ τ(Σ) we have

that σni ∈ Gt with frequency greater than 0. Therefore, for such a fixed i ∈ τ(Σ),

we can choose nk to be the subsequence of positive integers such that σnk i ∈ Gt for

all k ∈ N. By Lemma 6.4.2 we can choose Nε ∈ N such that for all n > Nε,

α2(i|n)

α1(i|n)
<

1

Lε
.

Therefore, for k > Nε, we have

(s1+ε) log
α2(i|nk)

α1(i|nk)
6 log πt(µt)

(
Q1

(
πt(Π(σnk i),

α2(i|nk)

α1(i|nk)

))
6 (s1−ε) log

α2(i|nk)

α1(i|nk)
.

We now need to show that for mt almost all such i and large enough k, we

will have πi,nks = πi,nkp = πt. Since σnk i ∈ τ(Σ), i|nk is in the diagonal case which

implies that πi,nks = πi,nkp . Moreover it follows by Lemmas 6.2.11 and 6.2.10 that,
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for k sufficiently large, for mt almost all i

Snkft,1(i) > Snkft′,1(i) (t′ 6= t)

which in turn implies that the longer side of the rectangle Si|nk ([0, 1]2) is the hori-

zontal side if t = 1 and vertical side if t = 2. Therefore πi,nkp = πt as claimed and

thus we obtain (6.13).

The fact that µt(B(x, nk, r)) satisfies (6.12) follows because since σnk i ∈
τ(Σ), this implies that 1 6 τnk+1(i) 6 d.

It only remains to prove that
nk+1

nk
→ 1 as k → ∞. To see this let Snk =∑nk

r=0 χGt(σ
r(i)). Then the ergodic theorem tells us that limk→∞

Snk
nk

= mt(Gt) > 0.

Moreover, clearly
Snk+1

nk+1
=

Snk+1

nk+1
. Now,∣∣∣∣Snknk

(
nk
nk+1

− 1

)
+

1

nk+1

∣∣∣∣ =

∣∣∣∣Snk + 1

nk+1
− Snk

nk

∣∣∣∣→ 0

as k → ∞. Since 1
nk+1

→ 0 as k → ∞ and
Snk
nk
→ mt(Gt) > 0 as k → ∞ it follows

that nk
nk+1

− 1→ 0 as k →∞, in other words nk
nk+1

and
nk+1

nk
→ 1 as k →∞.

The next lemma is an analogue of Lemma 6.4.7 for µ instead of µt, and the

proof is almost identical. However, for the sake of clarity we state it separately.

Lemma 6.4.8. For m-almost every i ∈ Σ there exists a choice t ∈ {1, 2} and a

strictly increasing sequence of positive integers nk for which simultaneously µt(B(x, nk, r))

satisfies (6.12) for all k ∈ N and such that for all ε > 0 there exists Nε ∈ N, such

that for all k > Nε,

(s1 + ε) log
α2(i|nk)

α1(i|nk)

6 log πi,nks (µ)

(
Q1

(
πi,nks (Π(σnk i),

α2(i|nk)

α1(i|nk)

))
6 (s1 − ε) log

α2(i|nk)

α1(i|nk)
.

(6.15)

Moreover, we can choose the sequence nk such that

lim
k→∞

nk+1

nk
→ 1. (6.16)
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Proof. Fix t ∈ {1, 2} and define the function h
(l)
t : τ(Σ)→ R by

h
(l)
t (i) =

log πt(µ)
(
Q1

(
πt(Π(i)), 1

l

))
log 1

l

.

By Proposition 6.2.12 each of πt(µt) are exact dimensional with dimension s1.

Since m1 and m2 are mutually singular, π1(µ1) is not absolutely continuous with

respect to π1(µ2). Thus by Proposition 2.3.2, for m1 almost every i ∈ τ(Σ),

π1(µ1)
(
Q1

(
π1(Π(i)), 1

l

))
‘dominates’ π1(µ2)

(
Q1

(
π1(Π(i)), 1

l

))
, that is,

lim
l→∞

π1(µ2)
(
Q1

(
π1(Π(i)), 1

l

))
π1(µ1)

(
Q1

(
π1(Π(i)), 1

l

)) = 0

for m1 almost every i ∈ τ(Σ). Therefore,

lim
l→∞

h
(l)
1 (i) = lim

l→∞

log π1(µ1)
(
Q1

(
πt(Π(i)), 1

l

))
log 1

l

= s1

for m1 almost every i ∈ τ(Σ). A symmetric argument proves the analogous state-

ment for m2. Therefore,

lim
l→∞

h
(l)
t (i) = s1

for mt almost every i ∈ τ(Σ). The rest of the argument follows identically to that

for Lemma 6.4.7.

To prove Theorem 6.3.1 it suffices to show that the local dimension of µ is

what it should be at x = Π(i) for i in a set of full m-measure. The proof will be

split into two parts, concerning the lower and upper bound respectively.

6.4.4 The lower bound

Let i ∈ Σ belong to the set of full measure for which the conclusions of the Oseledets

and Shannon-McMillan-Breiman theorems 2.4.7 and 2.4.8 and Lemma 6.4.8 hold

simultaneously. In particular, let t ∈ {1, 2} be such that Lemma 6.4.8 is satisfied

for mt. Write x = Π(i).

Since F satisfies the strong separation property, there exists δ > 0 which

satisfies (6.10).

Consider the square Q2(x, δα2(i|n)). Observe that since any cylinder on the

nth level which is distinct from Si|n([0, 1]2) must be at least δα2(i|n−1)-separated

from Si|n([0, 1]2) and thereforeQ2(x, δα2(i|n)) only intersects the cylinder Si|n([0, 1]2).
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Therefore, it is easy to see that

Q2(x, δα2(i|n)) ∩ F ⊆ B(x, n, α2(i|n)).

By Lemma 6.4.5, it follows that

µ(Q2(x, δα2(i|n))) 6 m([i|n])πi,ns (µ)

(
Q1

(
πi,ns (Π(σn(i)),

α2(i|n)

α1(i|n)

))
.

Fix ε > 0 and let nk be the subsequence from Lemma 6.4.8. Observing that

the sequence δα2(i|nk) strictly decreases to zero, for any sufficiently small r > 0 we

can choose k ∈ N large enough such that

δα2(i|nk+1
) 6 r 6 δα2(i|nk).

Assume r > 0 is small enough to ensure k > Nε and then we have

logµ (Q2 (Π(i), r))

log r
>

logµ (Q2 (Π(i), δα2(i|nk)))

log δα2(i|nk+1
)

>
logm([i|nk ]) + log πi,nks (µ)

(
Q1

(
πi,nks (Π(σnk i)),

α2(i|nk )

α1(i|nk )

))
log δα2(i|nk+1

)

>
logm([i|nk ]) + (s1 − ε) log

α2(i|nk )

α1(i|nk )

log δα2(i|nk+1
)

=
− 1
nk

logm([i|nk ])− 1
nk

(s1 − ε) log
α2(i|nk )

α1(i|nk )

− 1
nk

log δ − 1
nk+1

nk+1

nk
logα2(i|nk+1

)

→ h(µ) + (s1 − ε)(χ2(µ)− χ1(µ))

χ2(µ)

as r → 0 (k →∞). Finally, letting ε→ 0 yields the desired lower bound.

6.4.5 The upper bound

Let i ∈ Σ belong to the set of full measure for which the conclusions of the Oseledets

and Shannon-McMillan-Breiman theorems 2.4.7 and 2.4.8 and Lemma 6.4.7 hold

simultaneously. In particular, let t ∈ {1, 2} be such that Lemma 6.4.7 is satisfied

for mt. Let nk be the subsequence for i from Lemma 6.4.7. Write x = Π(i).
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Consider the square Q2(x, 2α2(i|nk)). Clearly

B(x, nk, α2(i|nk)) ⊆ Q2(x, 2α2(i|nk)) ∩ F

and therefore by Lemma 6.4.6 it follows that

ν◦Π−1(Q2(x, 2α2(i|nk))) > Cmt◦τ([i|nk ])πi,nks (µt)

(
Q1

(
πi,nks (Π(σnk(i)),

α2(i|nk)

α1(i|nk)

))
.

Let ε > 0. Consider small r > 0, and since the sequence 2α2(i|nk) strictly decreases

to zero we can choose k such that

2α2(i|nk+1
) 6 r 6 2α2(i|nk).

Assume r is small enough to guarantee k > Nε. Then by Lemmas 6.4.6 and 6.4.7

we have

log ν ◦Π−1 (Q2 (Π(i), r))

log r

6
log ν ◦Π−1

(
Q2

(
Π(i), 2α2(i|nk+1

)
))

log 2α2(i|nk)

6
logCmt ◦ τ([i|nk+1

]) + log π
i,nk+1
s (µt)

(
Q1

(
π
i,nk+1
s (Π(σnk+1i)),

α2(i|nk+1
)

α1(i|nk+1
)

))
log 2α2(i|nk)

6
logC + logmt ◦ τ([i|nk+1

]) + (s1 + ε) log
α2(i|nk+1

)

α1(i|nk+1
)

log 2α2(i|nk)

=
− 1
nk+1

logC − 1
nk+1

log
(
mt ◦ τ([i|nk+1

])
)
− 1

nk+1
(s1 + ε) log

α2(i|nk+1
)

α1(i|nk+1
)

− 1
nk+1

log 2− 1
nk

nk
nk+1

logα2(i|nk)

→ h(µ) + (s1 + ε)(χ2(µ)− χ1(µ))

χ2(µ)

by Lemmas 6.4.2 and 6.4.3 as r → 0 (k → ∞). Finally, letting ε → 0 yields the

desired upper bound, and the result follows.
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Appendix A

Hilbert-Birkhoff cone theory

In this appendix we give an overview of the use of Hilbert-Birkhoff cone theory

in dynamics and prove the results of the statements in Section 4.4.1. The use of

projective metrics associated to cones to express spectral properties of the transfer

operator was introduced by Ferrero and Schmitt in [FS] in their proof of the Ruelle-

Perron-Frobenius theorem. More recently, they were used to prove exponential rates

of mixing for some expanding and hyperbolic systems, beginning with the paper of

Liverani [L]. This approach was generalised by Viana whose book [V] contains an

accessible exposition of the techniques of Hilbert-Birkhoff cone theory and their

applications to dynamics.

Essentially, one can construct (Hilbert) metrics with respect to which the

transfer operator is a contraction. This then allows one to obtain the invariant

measure via a fixed point theorem rather than by a compactness argument from

which one can, for instance, directly deduce exponential decay of correlations. For

more on Hilbert-Birkhoff cone theory see [B], [L], [V].

We will begin by introducing the notions of a cone, the corresponding partial

ordering and Hilbert metric. We also remind ourselves of the cone which was used in

Chapter 4. From then on we will alternate between presenting the results for general

cones that satisfy some conditions, and proving that our particular choice of cone

satisfies the necessary conditions. As a result we will obtain all of the propositions

4.4.1, 4.4.2, 4.4.4 and 4.4.5 that were employed in Chapter 4. In particular, firstly we

show that under a condition on the ‘diameter’ of the image of a cone under a linear

operator, the linear operator is a contraction with respect to the Hilbert metric.

This is followed by proving that our choice of cone and linear operator (some iterate

of the transfer operator) satisfies the necessary condition. Next we show that if we

equip the ambient vector space with norms that satisfy some conditions, then we can

154



relate the norm of the difference of two appropriate functions to the Hilbert metric

distance between the two functions. (Moreoever by using the previous result this

will allow us to use the fact that the linear operator is contracting with respect to

the Hilbert metric to deduce how our norms behave under the linear operator). This

is followed by a proof that all the specific norms that were considered in Chapter 4

(‖·‖∞, ‖·‖L1 , ‖·‖0,1) satisfy the necessary condition.

Let V be a vector space. We say that a subset C ⊂ V \ {0} is a cone if for

all λ > 0 and f ∈ C, then λf ∈ C.

We say that a cone C is convex if for all f, g ∈ C and λ1, λ2 > 0, then the

sum λ1f + λ2g ∈ C.

We say that a cone C is closed if the set C ∪ {0} is closed. We will assume

throughout that C ∩ −C = ∅.
Given a closed convex cone C ⊂ V , we can define an order relation � on V

by

f � g ⇔ g − f ∈ C ∪ {0}.

Observe that the partial ordering � will always depend implicitly on the cone

we are working with. Moreover, the partial ordering is compatible with the vector

space structure, that is, multiplication by positive scalars and addition.

Then we can define a (Hilbert or projective) metric Θ on C by setting

α(f, g) = sup{t > 0 : (g − tf)(x) ∈ C} = sup{t > 0 : tf � g}

β(f, g) = inf{s > 0 : sf − g ∈ C} = inf{s > 0 : g � sf}

Θ(f, g) = log
β(f, g)

α(f, g)

where we take α = 0 and β =∞ if the corresponding sets are empty.

We will now give a couple of examples of cones of functions, and their corre-

sponding Hilbert metrics.

The cone that we worked with in Section 4.4 was the set of non-negative

continuous functions on the interval, whose logarithms are Lipschitz with Lipschitz

constant less than a, that is,

Ca =
{
f ∈ C([0, 1]) : f > 0 and f(x) 6 ea|x−y|f(y)

}
where the parameter a > 0 is fixed. It is easy to check that Ca is a convex cone.

By definition, α(f, g) is the supremum of all t > 0 for which
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(a) (g − tf)(x) > 0 for all x ∈ [0, 1], that is, t 6 g(x)
f(x) .

(b) (g−tf)(x)
(g−tf)(y) 6 ea|x−y| for all x, y ∈ [0, 1]. Equivalently,

t 6
ea|x−y|g(y)− g(x)

ea|x−y|f(y)− f(x)

for all x, y ∈ [0, 1].

In particular, this means that

α(f, g) = inf

{
g(x)

f(x)
,
ea|x−y|g(x)− g(y)

ea|x−y|f(x)− f(y)
: x, y ∈ [0, 1], x 6= y

}
.

Similarly, we can obtain the expression

β(f, g) = sup

{
g(x)

f(x)
,
ea|x−y|g(x)− g(y)

ea|x−y|f(x)− f(y)
: x, y ∈ [0, 1], x 6= y

}

and then Θ(f, g) = log β(f,g)
α(f,g) .

Another cone of functions is the set of all non-negative continuous functions

on the interval, that is,

C+ = {f ∈ C([0, 1]) : f(x) > 0}.

Again, it is easy to check that this is a convex cone. We will denote its projective

metric by Θ+ = log
(
β+

α+

)
. In light of the above, it is easy to see that

α+(f, g) = inf

{
g(x)

f(x)

}
β+(f, g) = sup

{
g(x)

f(x)

}
Θ+(f, g) = log

β+(f, g)

α+(f, g)
= log sup

{
g(x)f(y)

f(x)g(y)
: x, y ∈ [0, 1]

}
.

We return back to the setting of a general cone C. Whenever one would

like to use cone theory to study the behaviour of a linear operator under some

chosen norm, one must first study the behaviour of the operator under the metric

Θ. It is not difficult to show that under mild conditions on the operator it will be

a contraction with respect to the metric Θ. In particular, we adopt the following

general set up: let V1, V2 be vector spaces and Ci ⊂ Vi be convex cones, where αi,

βi, Θi correspond to the relevant projective metric for Ci. Let L : V1 → V2 be a
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linear operator such that L(C1) ⊂ C2. Then

α1(f, g) = sup{t > 0 : g − tf ∈ C1}

6 sup{t > 0 : L(g − tf) ∈ C2}

= sup{t > 0 : L(g)− tL(f) ∈ C1} = α2(L(f), L(g))

where the second line follows because L(C1) ⊂ C2. analogously, we can also show

that β1(f, g) > β2(L(f), L(g)) for all f, g ∈ C1. Therefore

Θ2(L(f), L(g)) 6 Θ1(f, g).

However, in order for the contraction in Θ to yield useful results for norms

that we may wish to study, the contraction in Θ has to be strict. The following

classical result gives a sufficient condition for one to check whether an operator is

a strict contraction with respect to the metric Θ. In particular, it tells us that if

L(C1) has finite diameter with respect to Θ2, then L is a strict contraction. The

following result can be found in [V, Proposition 2.3].

Proposition A.0.9. Let C1, C2 be as above and D = sup{Θ2(Lf, Lg) : f, g ∈ C1}.
If D <∞ then

Θ2(Lf, Lg) 6 (1− e−D)Θ2(f, g)

for all f, g ∈ C1.

Proof. Without loss of generality, we can assume that α1(f, g) > 0 and β1(f, g) <∞
since otherwise we are done. Then there exist sequences tn → α1(f, g) and sn →
β1(f, g) such that g − tnf ∈ C1 and snf − g ∈ C1 for all n ∈ N. Thus, for all n > 1

Θ2(L(g − tnf), L(snf − g)) 6 D.

Therefore, there exist sequences (Tn) and (Sn) such that limn→∞ log Sn
Tn

6 D and

L(snf − g)− TnL(g − tnf) ∈ C2 (A.1)

SnL(g − tnf)− L(snf − g) ∈ C2. (A.2)

By linearity of L, (A.1) implies that (sn + tnTn)L(f)− (1 + Tn)L(g) ∈ C2 so that

β2(Lf, Lg) 6
sn + tnTn

1 + Tn
(A.3)
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and similarly (A.2) implies that

α2(Lf, Lg) >
sn + tnSn

1 + Sn
. (A.4)

Therefore,

Θ2(Lf, Lg) 6 log

(
sn + tnTn

1 + Tn
· 1 + Sn
sn + tnSn

)
= log

(
sn
tn

+ Tn

)
− log(1 + Tn)− log

(
sn
tn

+ Sn

)
+ log(1 + Sn)

=

∫ log( sn
tn

)

0

(
exdx

ex + Tn
− exdx

ex + Sn

)
6 log

(
sn
tn

)
·
(

1− Tn
Sn

)
.

Letting n→∞, we see that

Θ2(Lf, Lg) 6 Θ1(f, g)(1− e−D).

In order to save ourselves having to meddle with the definitions of the Hilbert

metric Θ when checking whether a linear operator L : Ca → Ca is a strict contraction,

the next result tells us that it is enough to just check that L(Ca) ⊂ Cλa for some

0 < λ < 1. The following result can be found in [V, Proposition 2.5].

Proposition A.0.10. Let a > 0 and 0 < λ < 1 be arbitrary. Define

Dλ,a = sup{Θ(f, g) : f, g ∈ Cλa}.

Then

D = Dλ,a <∞.
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Proof. Recall that

α(f, g) = inf

{
g(x)

f(x)
,
ea|x−y|g(x)− g(y)

ea|x−y|f(x)− f(y)
: x, y ∈ [0, 1], x 6= y

}

β(f, g) = sup

{
g(x)

f(x)
,
ea|x−y|g(x)− g(y)

ea|x−y|f(x)− f(y)
: x, y ∈ [0, 1], x 6= y

}

α+(f, g) = inf

{
g(x)

f(x)

}
β+(f, g) = sup

{
g(x)

f(x)

}
Θ+(f, g) = log sup

{
g(x)f(y)

f(x)g(y)
: x, y ∈ [0, 1]

}
.

We begin by showing that Dλ,a 6 sup{Θ+(f, g) : f, g ∈ Cλa} + C, where C

is some constant that depends only on λ.

Let f, g ∈ Cλa.

ea|x−y|g(x)− g(y)

ea|x−y|f(x)− f(y)
>

g(x)

f(x)

ea|x−y| − eλa|x−y|

ea|x−y| − e−λa|x−y|

> K
g(x)

f(x)

where K = inf{ z−zλ
z−z−λ : z > 1} ∈ (0, 1). So α(f, g) > Kα+(f, g). Similarly,

β(f, g) 6 Lβ+(f, g), where L = sup{ z−z−λ
z−zλ : z > 1} ∈ (1,∞). Thus,

Θ(f, g) = log
β(f, g)

α(f, g)
6 log

Lβ+(f, g)

Kα+(f, g)

= Θ+(f, g) + logL− logK.

Now,

Θ+(f, g) = log
β+(f, g)

α+(f, g)
= log sup

{
g(x)

f(x)

f(y)

g(y)
: x, y ∈ [0, 1]

}
.

But since f, g ∈ Cλa,

g(x)

g(y)
6 eλa|x−y| 6 eλa

f(y)

f(x)
6 eλa|x−y| 6 eλa

for all x, y ∈ [0, 1]. Thus Θ+(f, g) 6 log e2λa = 2λa, which implies Dλ,a 6 2λa +

logL− logK.
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Let C1 = C2 = Ca and Θ1 = Θ2 = Θ be the corresponding Hilbert metric.

The above result tells us that if L(Ca) ⊂ Cλa for some 0 < λ < 1, then

sup{Θ(L(f), L(g)) : f, g ∈ Ca} 6 Dλ,a <∞

and therefore, in light of Proposition A.0.9, L is a strict contraction with respect

to Θ. Therefore, checking whether an operator is a Θ-contraction now reduces to

proving results in the style of Lemmas 4.4.7 and 4.4.9.

Again, we return to the setting of a general cone C. Suppose C ⊂ V , where

V is a vector space equipped with some norm ‖·‖. Given that one has established

that a linear operator is a strict contraction with respect to some Hilbert metric Θ,

we need a tool that will let us use the contraction in Θ to control the norm ‖·‖ of

functions that belong to the cone. The following classical result in [L] tells us that

under some hypothesis on ‖·‖, we can control ‖f − g‖ by Θ(f, g) for f, g ∈ C.

Proposition A.0.11. Let ‖·‖ be a norm on V , C ⊂ V be a convex cone which

induces the partial ordering � and suppose that for all f, g ∈ V ,

−f � g � f ⇒ ‖g‖ 6 ‖f‖.

Then given any f, g ∈ C for which ‖f‖ = ‖g‖,

‖f − g‖ 6 (eΘ(f,g) − 1)‖f‖.

We won’t prove this result directly, but instead we’ll state and prove a slight

generalisation of this result, which we used several times in Section 4.4. Clearly, if

we fix C = 1 and ‖·‖1 = ‖·‖2 = ‖·‖ in what follows, we recover Proposition A.0.11.

Note also that the condition on ‖·‖1 could also be relaxed, and a similar conclusion

would follow. The proof of the following result is an adaptation of [L, Lemma 1.3].

Proposition A.0.12. Let ‖·‖1, ‖·‖2 be two norms on V and let C ⊂ V be a convex

cone which induces the partial ordering �. Suppose there exists C > 1 such that for

all f, g ∈ V

−f � g � f ⇒ ‖g‖1 6 ‖f‖1
‖g‖2 6 C‖f‖2.
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Then given any f, g ∈ C for which ‖f‖1 = ‖g‖1,

‖f − g‖2 6 C2(eΘ(f,g) − 1)‖f‖2

Proof. Denote α = α(f, g) and β = β(f, g) where α and β are the usual objects

related to the projective metric Θ. In particular, we know that Θ(f, g) = log
(
β
α

)
where αf � g and g � βf . So in particular

−g � 0 � αf � g

so that ‖g‖1 > α‖f‖1. Since ‖f‖1 = ‖g‖1 this implies that α 6 1. analogously,

−βf � 0 � g � βf

so that β‖f‖1 > ‖g‖1, that is, β > 1.

Moreover, by the assumption on ‖·‖2, this means that ‖f‖2 6 C
α ‖g‖2.

Using the fact that α 6 1 and β > 1, we obtain that

−(β − α)f � (α− 1)f � g − f � (β − 1)f � (β − α)f

which implies that

‖g − f‖2 6 (β − α)C‖f‖2 6
β − α
α

C2‖g‖2

6 C2(eΘ(f,g) − 1)‖g‖2.

In Propositions A.0.11 and A.0.12, it was important that the norms that

we were working with had the property that if f and g were functions for which

−f � g � f , then we had some control over ‖g‖ in terms of ‖f‖. In particular, we

wanted there to exist some C > 1 for which

−f � g � f ⇒ ‖g‖ 6 C‖f‖.

Thus, the natural question arises: what norms satisfy some version of this

hypothesis?

In Section 4.4 we used Proposition A.0.12 in various places, in the setting

C = Ca and the norms ‖·‖∞, ‖·‖L1 and ‖·‖0,1. Therefore, we now prove that these
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norms have the property (A.5) (with C = 1 for ‖·‖∞ and ‖·‖L1 and C = 1 + a for

‖·‖0,1) in the specific setting that C = Ca. The following result is similar to [B,

Lemma 2.2].

Proposition A.0.13. Let � be the partial ordering induced by the cone Ca for some

a > 0. Let m be a probability measure on [0, 1] and L1 = L1(m). Then

−f � g � f ⇒ ‖g‖∞ 6 ‖f‖∞
‖g‖L1 6 ‖f‖L1

‖g‖0,1 6 (a+ 1)‖f‖0,1.

Proof. Let −f � g � f . By assumption, f − g, f + g ∈ Ca. By the positivity

assumption in the definition of Ca, it follows that f > g and f > −g. Therefore, it

immediately follows that ‖f‖∞ > ‖g‖∞ and ‖f‖L1 > ‖g‖L1 .

Therefore, it remains to show that ‖g‖0,1 6 (a + 1)‖f‖0,1. We will do this

by showing that [g]1 6 a‖f‖∞. To this end, let x, y ∈ [0, 1] such that g(x) > g(y).

Using the fact that f − g, f + g ∈ Ca we know that

f(y)− g(y) 6 (f(x)− g(x))ea|x−y|

f(x) + g(x) 6 (f(y) + g(y))ea|x−y|.

Adding these inequalities together and rearranging, we obtain

(ea|x−y| + 1)(g(x)− g(y)) 6 (f(x) + f(y))(ea|x−y| − 1)

that is,

g(x)− g(y) 6 (f(x) + f(y))
ea|x−y| − 1

ea|x−y| + 1
.

Since eδ−1
eδ+1

6 δ
2 for all δ > 0,

g(x)− g(y) 6 (f(x) + f(y))
a

2
|x− y|

so that
g(x)− g(y)

|x− y|
6 a

(
f(x) + f(y)

2

)
6 a‖f‖∞.

Since we chose x and y arbitrarily with the only restriction being that g(x) > g(y),

this implies [g]1 6 a‖f‖∞.
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Therefore,

‖g‖0,1 = [g]1 + ‖g‖∞ 6 (a+ 1)‖f‖∞ 6 (a+ 1)‖f‖0,1.
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Appendix B

Proof of Lemma 3.5.4

In this appendix we restate Lemma 3.5.4 with some additional detail and prove this

result. Recall that Lemma 3.5.4 was concerned with bounding the dimension of a

measure µp where p ∈ P0 and p1 was ‘close to 1’. In particular, we considered

p1 > ξ, where ξ was an undisclosed constant belonging to the unit interval.

We begin by giving an explicit value for ξ. Recall that z1 = Π((1)∞). Let ζ

denote

ζ = log |T ′(z1)|

and observe that ζ > 0 (this is always true when T ′ < 0, and in the case where

T ′ > 0 this is a consequence of our assumptions on the map in Theorem 3.3.1).

Then we define

ξ = exp

(
−s+ 1

s+ 3
ζ

)
∈ (0, 1). (B.1)

As we discussed in Chapter 3.1, the proof of Lemma 3.5.4 is a simplified

version of the arguments presented in Chapter 2.12, owing to the fact that at each

stage of the proof of Theorem 3.5.3 we had to get uniform bounds for the quantities

being studied which held for all p belonging to the general class Pε. On the other

hand, if we consider p ∈ P0 where p1 has a ‘good’ lower bound, these arguments

can be simplified.

In particular, to prove this lemma we will make estimates on the integral∫
f̃2
p,tdµp,t for t ∈ [1−s

8 , 1−s
4 ]. Then by following the proof of Theorem 4.6.3 we will

be able to complete the proof. As in Chapter 2.12, in order to estimate the integral∫
f̃2
p,tdµp,t from below, we need to make estimates on the ergodic sum of a chosen

periodic point and the measure of an appropriate cylinder about that periodic point.

Since we know that p1 is large, it makes sense to choose z1 to be our periodic point.
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For the measure of the cylinder we utilise Lemma 4.5.2 and 4.2.8 (to calculate the

size of the cylinder required).

We are now ready to state and prove a refinement of Lemma 3.5.4.

Lemma B.0.14. Let p ∈ P0 \ Pε, with p1 > ξ. Then

dimµp 6 1− 3

8

(
1− s

4

)2 ω

L

for some constant uniform constant ω > 0, where L is given in Lemma 4.6.2.

Proof. Let i ∈ Σ be the symbolic coding of z1, i.e. z1 = Π(i). Fix some p that

satisfies the assumptions. We follow the approach outlined in Lemma 4.2.6. Let

t ∈ [1−s
8 , 1−s

4 ]. We begin by obtaining an estimate of the form∫
f̃2
p,tdµp,t >

c2

4
µp,t([i1...im]) (B.2)

for each t, where c will be a lower bound on fp,t(z1) and m will be sufficiently large

so that f̃p,t(x) > c
2 for all x ∈ Ii1...im .

Recall that

fp,t(z1) = −β′p(t) log |T ′(z1)|+ log p1 = −β′p(t)ζ + log p1.

Since p ∈ P0, µp has dimension dimµp > 2s+2
s+3 , so that

−β′p(t) > −β′p(1) >
2s+ 2

s+ 3
.

Therefore, since p1 > ξ it follows that

fp,t(z1) >

(
2s+ 2

s+ 3
− s+ 1

s+ 3

)
ζ =

s+ 1

s+ 3
ζ

for all t ∈ [0, 1−s
4 ]. This gives us the value of c = s+1

s+3ζ in (B.2).

Next we estimate the measure of an arbitrary cylinder [i1...in] which contains

z1 = Π(i). By Lemma 4.5.2,

µp,t(Ii1...in) > C−1 ξtn

(|T ′(z1) · · ·T ′(Tn−1(z1))|)βp(t)

= C−1 exp

(
−ζn

(
s+ 1

s+ 3
t+ βp(t)

))
> C−1 exp(−ζn)
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where the last inequality is because

s+ 1

s+ 3
t+ βp(t) 6 t+ βp(t) 6 1

by convexity of βp.

Next, by Lemma 4.2.8, [f̃p,t]Λ−1 6 4C0
1−s for all t ∈ [1−s

8 , 1−s
4 ]. By following

the proof of Lemma 4.2.6, we see that∫
f̃2
p,tdµp,t >

1

4

(
s+ 1

s+ 3
ζ

)2

C−1 exp(−ζm) =: ω

where m is large enough so that
[f̃p,t]Λ−1

Λm 6 1
2
s+1
s+3ζ.

Finally, by following the proof of Lemma 4.6.3, we see that for all t ∈
[1−s

8 , 1−s
4 ], β′′p(t) > ω

L and

dimµp 6 1− 3

8

(
1− s

4

)2 ω

L
.
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Appendix C

Proof of Proposition 6.2.12

In this appendix we prove Proposition 6.2.12, which verifies the exact dimension-

ality of π1(µ1), π2(µ2), π1(µ2), π2(µ1) and the links between their exact dimensions.

Although these ideas fit into the framework of graph-directed self-similar systems

(see for instance [F5]), we do not need to introduce this concept in order to prove

the required results.

Define the maps gi : [0, 1] → [0, 1] by gi(x) = aix + τ
(1)
i for 1 6 i 6 d and

gi(x) = bi−dx+ τ
(2)
i−d if d+ 1 6 i 6 2d. Define the projection Π : ΣA → R by

Π(i) =

∞⋂
n=1

gi|n([0, 1])

which is well-defined since we assumed that the matrices Ai were contracting and

each map Si in our iterated function system mapped the unit square to itself. Then

upon inspection, we see that for i ∈ Σ

π1(Π(i)) = Π(τ(i)) (C.1)

and

π2(Π(i)) = Π(ω(i)) (C.2)

where π1 denotes the projection to the x co-ordinate and π2 denotes the projection

to the y co-ordinate. This is essentially equivalent to the observation that was

discussed before and after Example 6.2.4.

We claim that the measures Π(m1) and Π(m2) are exact dimensional. To
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see this, observe that these measures are supported on the set

⋃
i∈ΣA

∞⋂
n=1

gi|n([0, 1]) ⊂
⋃

i∈Σ2d

∞⋂
n=1

gi|n([0, 1]) (C.3)

where Σ2d denotes the full shift on 2d symbols and so the set on the right hand side

of (C.3) is a self-similar set.

Consider mt ◦ Π
−1

as a measure on Σ2d and denote this by m′t. Also let

Π
′
: Σ2d → R be the projection onto the self-similar set

Π
′
(i) =

∞⋂
n=1

gi|n([0, 1]).

Since mt is an invariant ergodic measure on Σ, it is straightforward to show that

m′t is also invariant and ergodic for the full shift. Then by Theorem 6.1.1, Π
′
(m′t)

is exact dimensional and therefore by the relationship between the pairs mt,m
′
t and

Π,Π
′

it immediately follows that Π(mt) is also exact dimensional, completing the

claim. We are now ready to prove Proposition 6.2.12.

Proof of Proposition 6.2.12. By the above discussion, we know that the measures

Π(m1) and Π(m2) are exact dimensional.

The measures π1(µ1) and π2(µ2) are both absolutely continuous with respect

to Π(m1) and π1(µ2) and π2(µ1) are both absolutely continuous with respect to

Π(m2). To see this, notice that π1(µ1) = m1 ◦ τ ◦Π−1 ◦ π−1
1 = m1 ◦ τ ◦ (π1 ◦Π)−1 =

m1 ◦ τ ◦ (Π ◦ τ)−1 = m1 ◦ τ ◦ τ−1 ◦ Π
−1 � m1 ◦ (Π)−1 = Π(m1), where the third

equality follows by (C.1) and the absolute continuity is because τ is injective but

not surjective. Similarly, π2(µ2) = m2 ◦ τ ◦ Π−1 ◦ π−1
2 = m2 ◦ τ ◦ (π2 ◦ Π)−1 =

m2◦τ◦(Π◦ω)−1 = m2◦τ◦ω−1◦Π−1
= m1◦ω◦ω−1◦Π−1 � m1◦(Π)−1 = Π(m1) where

the third equality follows by (C.2), the fifth by (6.8) and the absolute continuity is

because ω is injective but not surjective. The other two cases follow similarly.

Finally the result follows by Proposition 2.3.1.
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